Greub | Linear Algebra | E-Book | www.sack.de
E-Book

E-Book, Englisch, Web PDF

Reihe: Grundlehren der mathematischen Wissenschaften

Greub Linear Algebra


Third Auflage 1967
ISBN: 978-3-662-00672-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Web PDF

Reihe: Grundlehren der mathematischen Wissenschaften

ISBN: 978-3-662-00672-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The major change between the second and third edition is the separation of linear and multilinear algebra into two different volumes as well as the incorporation of a great deal of new material. However, the essential character of the book remains the same; in other words, the entire presentation continues to be based on an axiomatic treatment of vector spaces. In this first volume the restriction to finite dimensional vector spaces has been eliminated except for those results which do not hold in the infinite dimensional case. The restriction of the coefficient field to the real and complex numbers has also been removed and except for chapters VII to XI, § 5 of chapter I and § 8, chapter IV we allow any coefficient field of characteristic zero. In fact, many of the theorems are valid for modules over a commutative ring. Finally, a large number of problems of different degree of difficulty has been added. Chapter I deals with the general properties of a vector space. The topology of a real vector space of finite dimension is axiomatically characterized in an additional paragraph.

Greub Linear Algebra jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


0. Prerequisites.- I. Vector spaces.- § 1. Vector spaces.- § 2. Linear mappings.- § 3. Subspaces and factor spaces.- § 4. Dimension.- § 5. The topology of a real finite dimensional vector space.- II. Linear mappings.- § 1. Basic properties.- § 2. Operations with linear mappings.- § 3. Linear isomorphisms.- § 4. Direct sum of vector spaces.- § 5. Dual vector spaces.- § 6. Finite dimensional vector spaces.- III. Matrices.- § 1. Matrices and systems of linear equations.- § 2. Multiplication of matrices.- § 3. Basis transformation.- § 4. Elementary transformations.- IV. Determinants.- § 1. Determinant functions.- § 2. The determinant of a linear transformation.- § 3. The determinant of a matrix.- § 4. Dual determinant functions.- § 5. Cofactors.- § 6. The characteristic polynomial.- § 7. The trace.- § 8. Oriented vector spaces.- V. Algebras.- § 1. Basic properties.- § 2. Ideals.- § 3. Change of coefficient field of a vector space.- VI. Gradations and homology.- § 1. G-graded vector spaces.- § 2. G-graded algebras.- § 3. Differential spaces and differential algebras.- VII. Inner product spaces.- § 1. The inner product.- § 2. Orthonormal bases.- § 3. Normed determinant functions.- § 4. Duality in an inner product space.- § 5. Normed vector spaces.- VIII. Linear mappings of inner product spaces.- § 1. The adjoint mapping.- § 2. Selfadjoint mappings.- § 3. Orthogonal projections.- § 4. Skew mappings.- § 5. Isometric mappings.- § 6. Rotations of the plane and of 3-space.- § 7. Differentiable families of linear automorphisms.- IX. Symmetric bilinear functions.- § 1. Bilinear and quadratic functions.- § 2. The decomposition of E ..- § 3. Pairs of symmetric bilinear functions.- § 4. Pseudo-Euclidean spaces.- § 5. Linear mappings ofPseudo-Euclidean spaces.- X. Quadrics.- § 1. Affine spaces.- § 2. Quadrics in the affine space.- § 3. Affine equivalence of quadrics.- § 4. Quadrics in the Euclidean space.- XI. Unitary spaces.- § 1. Hermitian functions.- § 2. Unitary spaces.- § 3. Linear mappings of unitary spaces.- § 4. Unitary mappings of the complex plane.- § 5. Application to the orthogonal group.- § 6. Application to Lorentz-transformations.- XII. Polynomial algebra.- § 1. Basic properties.- § 2. Ideals and divisibility.- § 3. Products of relatively prime polynomials.- § 4. Factor algebras.- § 5. The structure of factor algebras.- XIII. Theory of a linear transformation.- § 1. Polynomials in a linear transformation.- § 2. Generalized eigenspaces.- § 3. Cyclic spaces and irreducible spaces.- § 4. Application of cyclic spaces.- § 5. Nilpotent and semisimple transformations.- § 6. Applications to inner product spaces.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.