Guiggiani The Science of Vehicle Dynamics
2014
ISBN: 978-94-017-8533-4
Verlag: Springer Netherland
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Handling, Braking, and Ride of Road and Race Cars
E-Book, Englisch, 356 Seiten, eBook
ISBN: 978-94-017-8533-4
Verlag: Springer Netherland
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Preface.- 1 Introduction.- 1.1 Vehicle Definition.- 1.2 Vehicle Basic Scheme.- References.- 2 Mechanics of the Wheel with Tire.- 2.1 The Tire as a Vehicle Component.- 2.2 Rim Position and Motion.- 2.3 Carcass Features.- 2.4 Contact Patch.- 2.5 Footprint Force.- 2.5.1 Perfectly Flat Road Surface.- 2.6 Tire Global Mechanical Behavior.- 2.6.1 Tire Transient Behavior.- 2.6.2 Tire Steady-State Behavior.- 2.6.3 Rolling Resistance.- 2.6.4 Speed Independence (Almost).- 2.6.5 Pure Rolling (not Free Rolling).- 2.7 Tire Slips.- 2.7.1 Rolling Velocity.- 2.7.2 Definition of Tire Slips.- 2.7.3 Slip Angle.- 2.8 Grip Forces and Tire Slips.- 2.9 Tire Testing.- 2.9.1 Pure Longitudinal Slip.- 2.9.2 Pure Lateral Slip.- 2.10 Magic Formula.- 2.11 Mechanics of Wheels with Tire.- 2.12 Summary.- 2.13 List of Some Relevant Concepts.- References.- 3 Vehicle Model for Handling and Performance.- 3.1 Mathematical Framework.- 3.2 Vehicle Congruence (Kinematic) Equations.- 3.2.1 Velocities.- 3.2.2 Yaw Angle and Trajectory.- 3.2.3 Velocity Center.- 3.2.4 Fundamental Ratios.- 3.2.5 Accelerations and Radii of Curvature.- 3.2.6 Acceleration Center.- 3.2.7 Tire Kinematics (Tire Slips).- 3.3 Vehicle Constitutive (Tire) Equations.- 3.4 Vehicle Equilibrium Equations.- 3.5 Forces Acting on the Vehicle.- 3.5.1 Weight.- 3.5.2 Aerodynamic Force.- 3.5.3 Road–Tire Friction Forces.- 3.5.4 Road–Tire Vertical Forces.- 3.6 Vehicle Equilibrium Equations (more explicit form).- 3.7 Load Transfers.- 3.7.1 Longitudinal Load Transfer.- 3.7.2 Lateral Load Transfers.- 3.7.3 Vertical Loads on each Tire.- 3.8 Suspension First-Order Analysis.- 3.8.1 Suspension Reference Configuration.- 3.8.2 Suspension Internal Coordinates.- 3.8.3 Camber variation.- 3.8.4 Vehicle Internal Coordinates.- 3.8.5 Roll and Vertical Stiffnesses.- 3.8.6 Suspension Internal Equilibrium.- 3.8.7 Effects of a Lateral Force.- 3.8.8 No-Roll Centers and No-Roll Axis.- 3.8.9 Forces at the No-Roll Centers.- 3.8.10 Suspension Jacking.- 3.8.11 Roll Angle and Lateral Load Transfers.- 3.8.12 Explicit Expressions of Lateral Load Transfers.- 3.8.13 Lateral Load Transfers with Rigid Tires.- 3.9 Dependent Suspensions.- 3.10 Sprung and Unsprung Masses.- 3.11 Vehicle Model for Handling and Performance.- 3.11.1 Equilibrium Equations.- 3.11.2 Constitutive (Tire) Equations.- 3.11.3 Congruence (Kinematic) Equations.- 3.11.4 Principles of any Differential Mechanism.- 3.12 The Structure of this Vehicle Model.- 3.13 Three-Axle vehicles.- 3.14 Summary.- 3.15 List of Some Relevant Concepts.- References.- 4 Braking Performance.- 4.1 Pure Braking.- 4.2 Vehicle Model for Braking Performance.- 4.3 Equilibrium Equations.- 4.4 Longitudinal Load Transfer.- 4.5 Maximum Deceleration.- 4.6 Brake Balance.- 4.7 All Possible Braking Combinations.- 4.8 Changing the Grip.- 4.9 Changing the Weight Distribution.- 4.10 A Numerical Example.- 4.11 Braking Performance of Formula Cars.- 4.11.1 Equilibrium Equations.- 4.11.2 Longitudinal Load Transfer.- 4.11.3 Maximum Deceleration.- 4.11.4 Braking Balance.- 4.11.5 Typical Formula 1 Braking Performance.- 4.12 Summary.- 4.13 List of Some Relevant Concepts.- 5 The Kinematics of Cornering.- 5.1 Planar Kinematics of a Rigid.- 5.1.1 Velocity Field and Velocity Center.- 5.1.2 Acceleration Field, Inflection Circle and Acceleration Center.- 5.2 The Kinematics of a Turning Vehicle.- 5.2.1 Fixed and Moving Centrodes of a Turning Vehicle.- 5.2.2 Inflection Circle.- 5.2.3 Variable Curvatures.- References.- 6 Handling of Road Cars.- 6.1 Open Differential.- 6.2 Fundamental Equations of Vehicle Handling.- 6.3 Double Track Model.- 6.4 Single Track Model.- 6.4.1 Governing Equations of the Single Track Model.- 6.4.2 Axle Characteristics.- 6.5 Alternative State Variables.- 6.6 Inverse Congruence Equations.- 6.7 Vehicle in Steady-State Conditions.- 6.7.1 The Role of the Steady-State Lateral Acceleration.- 6.7.2 Steady-State Analysis.- 6.8 Handling Diagram—the Classical Approach.- 6.9 Weak Concepts in Classical Vehicle Dynamics.- 6.9.1 Popular Definitions of Understeer/Oversteer.- 6.10 Map of Achievable Performance (MAP)—a New Global Approach.- 6.11 Vehicle in Transient Conditions (Stability and Control Derivatives).- 6.11.1 Steady-State Conditions (Equilibrium Points).- 6.11.2 Linearization of the Equations of Motion.- 6.11.3 Stability.- 6.11.4 Forced Oscillations (Driver Action).- 6.12 Relationship Between Steady State Data and Transient Behavior.- 6.13 New Understeer Gradient.- 6.14 Stability (Again).- 6.15 The Single Track Model Revisited.- 6.15.1 Different Vehicles with Almost Identical Handling.- 6.16 Road Vehicles with Locked or Limited Slip Differential.- 6.17 Linear Single Track Model.- 6.17.1 Governing Equations.- 6.17.2 Solution for Constant Forward Speed.- 6.17.3 Critical Speed.- 6.17.4 Transient Vehicle Behavior.- 6.17.5 Steady-State Behavior: Steering Pad.- 6.17.6 Lateral Wind Gust.- 6.17.7 Banked Road.- 6.18 Summary.- 6.19 List of Some Relevant Concepts.- References.- 7 Handling of Race Cars.- 7.1 Locked and Limited Slip Differentials.- 7.2 Fundamental Equations of Race Car Handling.- 7.3 Double Track Race Car Model.- 7.4 Tools for Handling Analysis.- 7.5 The Handling Diagram Becomes the Handling Surface.- 7.5.1 Handling with Locked Differential (No Wings).- 7.6 Handling of Formula Cars.- 7.6.1 Handling Surface.- 7.6.2 Map of Achievable Performance (MAP).- 7.7 Summary.- 7.8 List of Some Relevant Concepts.- References.- 8 Ride Comfort and Road Holding.- 8.1 Vehicle Models for Ride and Road Holding.- 8.2 Quarter Car Model.- 8.2.1 The Inerter as a Spring Softener 8.2.2 Quarter Car Natural Frequencies and Modes.- 8.3 Shock Absorber Tuning.- 8.3.1 Comfort Optimization.- 8.3.2 Road Holding Optimization.- 8.3.3 The Inerter as a Tool for Road Holding Tuning.- 8.4 Road Profiles.- 8.5 Free Vibrations of Road Cars.- 8.5.1 Governing Equations.- 8.5.2 Proportional Viscous Damping.- 8.5.3 Vehicle with Proportional Viscous Damping.- 8.6 Tuning of Suspension Stiffnesses.- 8.6.1 Optimality of Proportional Damping.- 8.6.2 A Numerical Example.- 8.7 Non-Proportional Damping.- 8.8 Interconnected Suspensions.- 8.9 Summary.- 8.10 List of Some Relevant Concepts.- References.- 9 Handling with Roll Motion.- 9.1 Vehicle Position and Orientation.- 9.2 Yaw, Pitch and Roll.- 9.3 Angular Velocity.- 9.4 Angular Acceleration.- 9.5 Vehicle Lateral Velocity.- 9.5.1 Track Invariant Points.- 9.5.2 Vehicle Invariant Point (VIP).- 9.5.3 Lateral Velocity and Acceleration.- 9.6 Three-Dimensional Vehicle Dynamics.- 9.6.1 Velocity and Acceleration of G.- 9.6.2 Rate of Change of the Angular Momentum.- 9.6.3 Completing the Torque Equation.- 9.6.4 Equilibrium Equations.- 9.6.5 Including the Unsprung Mass.- 9.7 Handling with Roll Motion.- 9.7.1 Equilibrium Equations.- 9.7.2 Load Transfers.- 9.7.3 Constitutive (Tire) Equations.- 9.7.4 Congruence (Kinematic) Equations.- 9.8 Steady-State and Transient Analysis.- 9.9 Summary.- 9.10 List of Some Relevant Concepts.- References.- 10 Tire Models.- 10.1 Brush Model Definition.- 10.1.1 Roadway and Rim.- 10.1.2 Shape of the Contact Patch.- 10.1.3 Force–Couple Resultant.- 10.1.4 Position of the Contact Patch.- 0.1.5 Pressure Distribution.- 10.1.6 Friction.- 10.1.7 Constitutive Relationship.- 10.1.8 Kinematics.- 10.2 General Governing Equations of the Brush Model.- 10.2.1 Data for Numerical Examples.- 10.3 Brush Model Steady-State Behavior.- 10.3.1 Governing Equations.- 10.3.2 Adhesion and Sliding Zones.- 10.3.3 Force–Couple Resultant.- 10.4 Adhesion Everywhere (Linear Behavior).- 10.5 Wheel with Pure Translational Slip.- 10.5.1 Rectangular Contact Patch.- 10.5.2 Elliptical Contact Patch.- 10.6 Wheel with Pure Spin Slip.- 10.7 Wheel with Both Translational and Spin Slips.- 10.7.1 Rectangular Contact Patch.- 10.7.2 Elliptical Contact Patch.- 10.8 Brush Model Transient Behavior.- 10.8.1 Transient Model with Carcass Compliance Only.- 10.8.2 Transient Model with Carcass and Tread Compliance.- 10.8.3 Numerical Examples.- 10.9 Summary.- 10.10List of Some Relevant Concepts.- References.- References.- Index.




