Handbook of Nutrition, Diet, and the Eye | E-Book | sack.de
E-Book

E-Book, Englisch, 704 Seiten

Handbook of Nutrition, Diet, and the Eye


1. Auflage 2014
ISBN: 978-0-12-404606-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 704 Seiten

ISBN: 978-0-12-404606-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



The Handbook of Nutrition, Diet and the Eye is the first book to thoroughly address common features and etiological factors in how dietary and nutritional factors affect the eye. The ocular system is perhaps one of the least studied organs in diet and nutrition, yet the consequences of vision loss can be devastating. One of the biggest contributors to complete vision loss in the western hemisphere is diabetes, precipitated by metabolic syndrome. In some developing countries, micronutrient deficiencies are major contributory factors to impaired vision. However, there are a range of ocular defects that have either their origin in nutritional deficiencies or excess or have been shown to respond favorably to nutritional components. The eye from the cornea to the retina may be affected by nutritional components. Effects may be physiological or molecular. This book represents essential reading for nutritionists, dietitians, optometrists, ophthalmologists, opticians, endocrinologists, and other clinicians and researchers interested in eye health and vision in general. - Saves clinicians and researchers time in quickly accessing the very latest details on a broad range of nutrition, ocular health, and disease issues - Provides a common language for nutritionists, nutrition researchers, optometrists, and ophthalmologists to discuss how dietary and nutritional factors, and related diseases and syndromes affect the eye - Preclinical, clinical, and population studies will help nutritionists, dieticians, and clinicians map out key areas for research and further clinical recommendations

Handbook of Nutrition, Diet, and the Eye jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Handbook of Nutrition, Diet, and The Eye;4
3;Copyright;5
4;Contents;6
5;Contributors;16
6;Preface;20
7;Section 1 - INTRODUCTIONS AND OVERVIEWS;22
7.1;Chapter 1 - The Eye and Vision: An Overview;24
7.1.1;INTRODUCTION;24
7.1.2;DEVELOPMENT OF THE EYE;24
7.1.3;THE OCULAR ADNEXA;24
7.1.4;THE POSTERIOR STRUCTURES OF THE EYE;27
7.1.5;VISUAL PATHWAY;29
7.1.6;TAKE-HOME MESSAGES;29
7.1.7;References;30
7.2;Chapter 2 - Age-Related Macular Degeneration: An Overview;32
7.2.1;INTRODUCTION;32
7.2.2;EPIDEMIOLOGY;32
7.2.3;RISK FACTORS;33
7.2.4;PATHOGENESIS;34
7.2.5;CLASSIFICATION;34
7.2.6;NATURAL HISTORY;34
7.2.7;RETINAL IMAGING FOR THE DIAGNOSIS AND MANAGEMENT OF AGE-RELATED MACULAR DEGENERATION;35
7.2.8;MANAGEMENT;36
7.2.9;FUTURE DIRECTIONS;38
7.2.10;TAKE-HOME MESSAGES;39
7.2.11;References;39
7.3;Chapter 3 - Cataracts: An Overview;42
7.3.1;INTRODUCTION;42
7.3.2;ETYMOLOGY;42
7.3.3;EPIDEMIOLOGY;42
7.3.4;CLASSIFICATION, PATHOGENESIS, AND RISK FACTORS;42
7.3.5;CLINICAL PRESENTATION;45
7.3.6;DIAGNOSTIC EVALUATION;45
7.3.7;PREVENTION;45
7.3.8;TREATMENT;46
7.3.9;TAKE-HOME MESSAGES;48
7.3.10;References;49
7.4;Chapter 4 - Glaucoma: An Overview;50
7.4.1;INTRODUCTION;50
7.4.2;DEFINITION OF GLAUCOMA AND ITS CLASSIFICATION;50
7.4.3;INTRAOCULAR PRESSURE AS A RISK FACTOR;52
7.4.4;PATHOGENESIS OF GLAUCOMA;54
7.4.5;EPIDEMIOLOGY HINTS;59
7.4.6;CONCLUSIONS;59
7.4.7;References;60
7.5;Chapter 5 - Diabetic Retinopathy: An Overview;62
7.5.1;INTRODUCTION;62
7.5.2;EPIDEMIOLOGY;62
7.5.3;NATURAL HISTORY;63
7.5.4;PATHOPHYSIOLOGY;64
7.5.5;BIOCHEMICAL CHANGES;65
7.5.6;MITOCHONDRIAL DYSFUNCTION;68
7.5.7;NEURONAL DYSFUNCTION AND INFLAMMATION;68
7.5.8;VASCULAR DAMAGE;68
7.5.9;DIAGNOSIS AND PREVENTION;68
7.5.10;TREATMENT OF DIABETIC RETINOPATHY AND DIABETIC MACULAR EDEMA;69
7.5.11;References;71
8;Section 2 - MACULAR DEGENERATION;74
8.1;Chapter 6 - Trace Elements, Vitamins, and Lipids and Age-Related Macular Degeneration: An Overview of the Current Concepts on Nutrients and AMD;76
8.1.1;INTRODUCTION;76
8.1.2;CAROTENOIDS;76
8.1.3;TRACE ELEMENTS;76
8.1.4;VITAMINS;78
8.1.5;LIPIDS;81
8.1.6;EPIGENETICS AND NUTRIENTS;82
8.1.7;RESVERATROL;82
8.1.8;SUPPLEMENTATION WITH COMBINED NUTRIENTS;82
8.1.9;CONCLUSION;83
8.1.10;TAKE-HOME MESSAGES;83
8.1.11;References;83
8.2;Chapter 7 - The Role of Lipids and Lipid Metabolism in Age-Related Macular Degeneration;86
8.2.1;INTRODUCTION;86
8.2.2;RETINAL LIPIDS;86
8.2.3;MECHANISM AND PATHOGENESIS OF AGE-RELATED MACULAR DEGENERATION;89
8.2.4;CONCLUSION;93
8.2.5;TAKE-HOME MESSAGES;93
8.2.6;Acknowledgment;93
8.2.7;References;93
8.3;Chapter 8 - Carotenoids and Age-Related Macular Degeneration;98
8.3.1;INTRODUCTION;98
8.3.2;CHEMISTRY OF MACULAR CAROTENOIDS;98
8.3.3;MEASUREMENT OF MACULAR CAROTENOIDS;99
8.3.4;DIET AND MACULAR CAROTENOIDS;100
8.3.5;ABSORPTION, BIOAVAILABILITY, AND METABOLISM OF MACULAR CAROTENOIDS;101
8.3.6;PROTECTIVE ROLE OF MACULAR PIGMENTS AND AGE-RELATED MACULAR DEGENERATION;102
8.3.7;CONCLUSION;102
8.3.8;TAKE-HOME MESSAGES;102
8.3.9;References;104
9;Section 3 - GLAUCOMAS;106
9.1;Chapter 9 - Glaucoma and Antioxidant Status;108
9.1.1;INTRODUCTION;108
9.1.2;OXIDATIVE STRESS;108
9.1.3;OXIDATIVE STRESS IN THE PATHOPHYSIOLOGY OF GLAUCOMA;111
9.1.4;ANTIOXIDANTS;112
9.1.5;ANTIOXIDANT STATUS IN GLAUCOMA;113
9.1.6;POTENTIAL VALUE OF ANTIOXIDANTS FOR THE TREATMENT OF GLAUCOMA;114
9.1.7;TAKE-HOME MESSAGES;114
9.1.8;References;116
9.2;Chapter 10 - Quercetin and Glaucoma;118
9.2.1;INTRODUCTION;118
9.2.2;OXIDATIVE STRESS;118
9.2.3;OXIDATIVE STRESS AND TRANSCRIPTION;118
9.2.4;OXIDATIVE STRESS AND GLAUCOMA;119
9.2.5;OXIDATIVE STRESS AND TRABECULAR MESHWORK;120
9.2.6;QUERCETIN AND GLAUCOMA;120
9.2.7;CONCLUSIONS;122
9.2.8;TAKE-HOME MESSAGES;122
9.2.9;References;122
9.3;
Chapter 11 - Diabetes Mellitus and Glaucoma;126
9.3.1;INTRODUCTION;126
9.3.2;EPIDEMIOLOGY: DIABETES MELLITUS AND PRIMARY OPEN-ANGLE GLAUCOMA;126
9.3.3;EPIDEMIOLOGY: DIABETES MELLITUS AND OTHER TYPES OF GLAUCOMA;126
9.3.4;PATHOPHYSIOLOGIC LINK BETWEEN DIABETES MELLITUS AND GLAUCOMA;128
9.3.5;CONCLUSIONS;130
9.3.6;TAKE-HOME MESSAGES;130
9.3.7;References;130
9.4;
Chapter 12 - Dietary Polyunsaturated Fatty Acids, Intraocular Pressure, and Glaucoma;132
9.4.1;INTRODUCTION;132
9.4.2;EPIDEMIOLOGIC DATA;132
9.4.3;LABORATORY RESEARCH;135
9.4.4;TAKE-HOME MESSAGES;139
9.4.5;References;139
10;Section 4 - CATARACTS;142
10.1;
Chapter 13 - Riboflavin and the Cornea and Implications for Cataracts;144
10.1.1;INTRODUCTION;144
10.1.2;HISTORY;144
10.1.3;DIETARY REQUIREMENTS;144
10.1.4;BIOLOGY;144
10.1.5;KERATOCONUS AND RIBOFLAVIN;146
10.1.6;ARIBOFLAVINOSIS;148
10.1.7;CATARACT;148
10.1.8;CONCLUSIONS;149
10.1.9;TAKE-HOME MESSAGES;150
10.1.10;References;150
10.2;
Chapter 14 - Diabetic Cataract and Role of Antiglycating Phytochemicals;152
10.2.1;INTRODUCTION;152
10.2.2;INHIBITORY POTENTIAL OF FOODS;153
10.2.3;INHIBITORY POTENTIAL OF SINGLE AND POLYHERBAL/AYURVEDIC DRUGS;154
10.2.4;INHIBITORY POTENTIAL OF INDIVIDUAL PHYTOCHEMICALS;156
10.2.5;TAKE-HOME MESSAGES;158
10.2.6;References;159
10.3;Chapter 15 - Role of Amino Acids on Prevention of Nonenzymatic Glycation of Lens Proteins in Senile and Diabetic Cataract;162
10.3.1;INTRODUCTION;162
10.3.2;HISTORY AND OVERVIEW OF THE FORMATION OF ADVANCED GLYCATION END-PRODUCTS;162
10.3.3;GLYCATING AGENTS;162
10.3.4;TYPES OF ADVANCED GLYCATION END-PRODUCT;163
10.3.5;ADVANCED GLYCATION END-PRODUCT FORMATION IN THE LENS;165
10.3.6;EFFECTS OF ADVANCED GLYCATION END-PRODUCTS ON THE FUNCTION OF PROTEINS;165
10.3.7;BIOLOGICAL DETOXIFICATION OF ADVANCED GLYCATION END-PRODUCTS;168
10.3.8;PREVENTION/INHIBITION OF ADVANCED GLYCATION END-PRODUCT FORMATION;168
10.3.9;INHIBITORY EFFECTS OF AMINO ACIDS ON ADVANCED GLYCATION END-PRODUCT FORMATION AND CATARACT;171
10.3.10;TAKE-HOME MESSAGES;174
10.3.11;References;174
10.4;Chapter 16 - Selenium Supplementation and Cataract;178
10.4.1;INTRODUCTION;178
10.4.2;DOSE OF SELENIUM RECOMMENDED FOR SUPPLEMENTATION;178
10.4.3;PREVIOUS STUDIES ON SELENIUM SUPPLEMENTATION;178
10.4.4;SELENIUM DEFICIENCY AND CATARACT;178
10.4.5;PREVENTIVE ROLES OF SELENIUM AGAINST CATARACT;179
10.4.6;SELENIUM AND GPX;180
10.4.7;SELENIUM AND PHOSPHATIDYLINOSITOL 3-KINASE (PI3-K)/PROTEIN KINASE B (AKT) PATHWAY;181
10.4.8;SELENIUM AND HSP70;183
10.4.9;SELENIUM AND DEOXYRIBONUCLEIC ACID METHYLATION;184
10.4.10;TAKE-HOME MESSAGES;184
10.4.11;References;184
11;Section 5 -OTHER EYE CONDITIONS;188
11.1;Chapter 17 - Vitamin A with Cyclosporine for Dry Eye Syndrome;190
11.1.1;INTRODUCTION;190
11.1.2;DRY EYE;190
11.1.3;DRY EYE AND INFLAMMATION;190
11.1.4;CONVENTIONAL TREATMENT OF DRY EYE;191
11.1.5;ANTI-INFLAMMATORY TREATMENT OF DRY EYE;191
11.1.6;SUPPLEMENT TREATMENTS IN DRY EYE;192
11.1.7;VITAMIN A;192
11.1.8;CYCLOSPORINE A;193
11.1.9;CYCLOSPORINE A IN DRY EYE;193
11.1.10;CYCLOSPORINE A VERSUS VITAMIN A;193
11.1.11;CONCLUSION;194
11.1.12;TAKE-HOME MESSAGES;195
11.1.13;References;195
11.2;Chapter 18 - Dietary N-3 Polyunsaturated Fatty Acids and Dry Eye;198
11.2.1;INTRODUCTION;198
11.2.2;DRY EYE: AN INFLAMMATORY PATHOLOGY;198
11.2.3;DIETARY N-3 POLYUNSATURATED FATTY ACIDS: THEIR ROLES IN INFLAMMATION;200
11.2.4;N-3 POLYUNSATURATED FATTY ACIDS AND DRY EYE;203
11.2.5;TAKE-HOME MESSAGES;205
11.2.6;References;206
12;Section 6 - OBESITY, METABOLIC SYNDROME,
AND DIABETES;210
12.1;Chapter 19 - Metabolic Syndrome and Cataract;212
12.1.1;INTRODUCTION;212
12.1.2;DEFINITIONS OF THE METABOLIC SYNDROME;212
12.1.3;PATHOPHYSIOLOGY OF METABOLIC SYNDROME;213
12.1.4;ASSOCIATION BETWEEN METABOLIC SYNDROME, COMPONENTS OF THE METABOLIC SYNDROME, AND CATARACT;213
12.1.5;TAKE-HOME MESSAGES;219
12.1.6;References;219
12.2;Chapter 20 - Childhood Obesity, Body Fatness Indices, and Retinal Vasculature;222
12.2.1;INTRODUCTION;222
12.2.2;CHILDHOOD OBESITY;222
12.2.3;ASSESSMENTS OF RETINAL VASCULATURE;223
12.2.4;CHILDHOOD OBESITY, BODY FATNESS INDICES, AND RETINAL VASCULATURE;224
12.2.5;FUTURE STUDIES;227
12.2.6;TAKE-HOME MESSAGES;227
12.2.7;References;228
12.3;Chapter 21 - Visual Evoked Potentials and Type-2 Diabetes Mellitus;232
12.3.1;INTRODUCTION;232
12.3.2;VISUAL EVOKED POTENTIALS;233
12.3.3;REVIEW OF LITERATURE;234
12.3.4;TAKE-HOME MESSAGES;237
12.3.5;References;237
13;Section 7 - MACRONUTRIENTS;238
13.1;Chapter 22 - Glycemic Index and Age-Related Macular Degeneration;240
13.1.1;INTRODUCTION;240
13.1.2;GLYCEMIC INDEX;240
13.1.3;GLYCEMIC INDEX AND HUMAN DISEASES;241
13.1.4;MECHANISM FOR HYPERGLYCEMIA TO DIABETIC RETINOPATHY AND AGE-RELATED MACULAR DEGENERATION;243
13.1.5;TAKE-HOME MESSAGES;251
13.1.6;Acknowledgments;251
13.1.7;References;252
13.2;Chapter 23 - Fish-Oil Fat Emulsion and Retinopathy in Very Low Birth Weight Infants;254
13.2.1;INTRODUCTION;254
13.2.2;PRETERM INFANT DEFICIT OF LC-PUFAS: THE RATIONALE FOR ADMINISTRATION;254
13.2.3;POTENTIAL CONSEQUENCES OF DHA DEFICIENCY IN THE VISUAL SYSTEM IN PRETERM INFANTS;255
13.2.4;RETINOPATHY OF PREMATURITY – POSSIBLE ROLE OF O-3 LC-PUFAS IN PREVENTION OF DISEASE;255
13.2.5;SAFETY OF PARENTERAL SUPPLEMENTATION OF FISH-OIL-BASED FAT EMULSION IN PRETERM INFANTS;257
13.2.6;FISH-OIL FAT EMULSION SUPPLEMENTATION MAY REDUCE THE RISK OF SEVERE RETINOPATHY IN VLBW INFANTS;258
13.2.7;TAKE-HOME MESSAGES;260
13.2.8;References;260
13.3;Chapter 24 - The Impact of Low Omega-3 Fatty Acids Diet on the Development of the Visual System;262
13.3.1;DEVELOPMENT OF THE VISUAL SYSTEM;262
13.3.2;CRITICAL PERIODS FOR BRAIN DEVELOPMENT;263
13.3.3;OMEGA-3 AND BRAIN DEVELOPMENT;265
13.3.4;ROLE OF OMEGA-3 ON DEVELOPMENT OF CENTRAL VISUAL CONNECTIONS;267
13.3.5;TAKE-HOME MESSAGES;269
13.3.6;References;270
13.4;Chapter 25 - Prenatal Omega-3 Fatty Acid Intake and Visual Function;274
13.4.1;INTRODUCTION;274
13.4.2;FIRST EVIDENCE OF OMEGA-3 FATTY ACID EFFECTS ON VISUAL FUNCTION;275
13.4.3;BENEFICIAL EFFECTS ON HUMAN RETINAL FUNCTION;275
13.4.4;OMEGA-3 FATTY ACID EXPOSURE AND INFANT VISUAL ACUITY;276
13.4.5;LONG-TERM BENEFITS OF DEVELOPMENTAL EXPOSURE TO OMEGA-3 POLYUNSATURATED FATTY ACIDS;278
13.4.6;TAKE-HOME MESSAGES;280
13.4.7;Acknowledgments;280
13.4.8;References;280
13.5;Chapter 26 - Omega-3 and Macular Pigment Accumulation: Results from the Pimavosa Study;284
13.5.1;TAKE-HOME MESSAGES;290
13.5.2;Acknowledgment;290
13.5.3;References;290
13.6;Chapter 27 - Dietary Carbohydrate and Age-Related Cataract;292
13.6.1;INTRODUCTION;292
13.6.2;DEFINITION OF DIETARY GLYCEMIC INDEX AND DIETARY GLYCEMIC LOAD;292
13.6.3;EPIDEMIOLOGIC STUDIES;293
13.6.4;PATHOGENY AND MECHANISMS;295
13.6.5;TAKE-HOME MESSAGES;297
13.6.6;References;297
13.7;Chapter 28 - Fruit and Vegetable Intake and Age-Related Cataract;300
13.7.1;INTRODUCTION;300
13.7.2;FRUIT AND VEGETABLES AND NUTRIENTS;300
13.7.3;NUTRITION AND THE PREVENTION OF CATARACT;301
13.7.4;EPIDEMIOLOGIC STUDIES CORRELATING FRUIT AND VEGETABLE INTAKE WITH THE RISK OF CATARACT;303
13.7.5;ASSESSMENT OF FRUIT AND VEGETABLE INTAKE IN EPIDEMIOLOGIC STUDIES;305
13.7.6;TAKE-HOME MESSAGES;305
13.7.7;References;305
13.8;Chapter 29 - Retinal Degeneration and Cholesterol Deficiency;308
13.8.1;INTRODUCTION;308
13.8.2;THE AY9944 RAT MODEL OF SMITH-LEMLI-OPITZ SYNDROME AND RETINAL DEGENERATION;308
13.8.3;BEYOND THE IMMEDIATE BIOSYNTHETIC DEFECT IN SMITH-LEMLI-OPITZ SYNDROME;311
13.8.4;THERAPEUTIC INTERVENTION WITH DIETARY CHOLESTEROL SUPPLEMENTATION;313
13.8.5;OXIDATION OF 7-DEHYDROCHOLESTEROL: POTENTIAL KEY TO THE PATHOBIOLOGY AND THE TREATMENT OF SMITH-LEMLI-OPITZ SYNDROME;314
13.8.6;HYPOTHESIS CONCERNING THE MECHANISM OF RETINAL DEGENERATION IN THE SMITH-LEMLI-OPITZ SYNDROME RAT MODEL;316
13.8.7;TAKE-HOME MESSAGES;316
13.8.8;Acknowledgments;317
13.8.9;References;317
14;Section 8 - MICRONUTRIENTS;320
14.1;Chapter 30 - Vitamin A, Zinc, Dark Adaptation, and Liver Disease;322
14.1.1;HISTORY OF VITAMIN A AND NIGHT BLINDNESS;322
14.1.2;VITAMIN A ABSORPTION AND METABOLISM;322
14.1.3;ALTERATIONS IN VITAMIN A STATUS IN LIVER DISEASE;323
14.1.4;DARK ADAPTATION STUDIES IN LIVER DISEASE;324
14.1.5;TAKE-HOME MESSAGES;328
14.1.6;References;330
14.2;Chapter 31 - Vitamin C Functions in the Cornea: Ultrastructural Features in Ascorbate Deficiency;332
14.2.1;INTRODUCTION;332
14.2.2;VITAMIN C;332
14.2.3;CORNEAL ULTRASTRUCTURE;333
14.2.4;VITAMIN C IN THE CORNEA;335
14.2.5;TAKE-HOME MESSAGES;339
14.2.6;Acknowledgments;339
14.2.7;References;339
14.3;Chapter 32 - Vitamin Transport Across the Blood–Retinal Barrier: Focus on Vitamins C, E, and Biotin;342
14.3.1;INTRODUCTION;342
14.3.2;TRANSPORT SYSTEM AT THE BLOOD–RETINAL BARRIER;342
14.3.3;VITAMIN C IN THE RETINA;344
14.3.4;VITAMIN C TRANSPORT ACROSS THE BLOOD–RETINAL BARRIER;344
14.3.5;VITAMIN C TRANSPORT IN MÜLLER CELLS;345
14.3.6;VITAMIN E IN THE RETINA;346
14.3.7;VITAMIN E TRANSPORT ACROSS THE BLOOD–RETINAL BARRIER;347
14.3.8;BIOTIN IN THE RETINA;347
14.3.9;BIOTIN TRANSPORT ACROSS THE BLOOD–RETINAL BARRIER;347
14.3.10;CONCLUSIONS;347
14.3.11;TAKE-HOME MESSAGES;348
14.3.12;References;348
14.4;Chapter 33 - Vitamin D and Diabetic Retinopathy;352
14.4.1;OVERVIEW OF VITAMIN D INSUFFICIENCY/DEFICIENCY;352
14.4.2;OVERVIEW OF DIABETIC RETINOPATHY;352
14.4.3;BASIC SCIENCE RESEARCH ON VITAMIN D AND DIABETIC RETINOPATHY;354
14.4.4;CLINICAL STUDIES ASSESSING VITAMIN D AND DIABETIC RETINOPATHY;355
14.4.5;CONCLUSIONS;356
14.4.6;TAKE-HOME MESSAGES;357
14.4.7;References;357
14.5;Chapter 34 - Vitamin D and Age-Related Macular Degeneration;360
14.5.1;INTRODUCTION;360
14.5.2;VITAMIN D;360
14.5.3;AGE-RELATED MACULAR DEGENERATION;361
14.5.4;VITAMIN D AND AGE-RELATED MACULAR DEGENERATION;363
14.5.5;HOW TO SUPPLY VITAMIN D;365
14.5.6;PROSPECTIVE;367
14.5.7;TAKE-HOME MESSAGES;367
14.5.8;References;368
14.6;Chapter 35 - Folate Transport in Retina and Consequences on Retinal Structure and Function of Hyperhomocysteinemia;370
14.6.1;INTRODUCTION;370
14.6.2;FOLIC ACID (FOLATE);370
14.6.3;ROLE OF FOLATE IN METABOLISM;370
14.6.4;OVERVIEW OF THE RETINA;371
14.6.5;MECHANISMS OF FOLATE UPTAKE IN THE RETINA;372
14.6.6;REGULATION OF THE EXPRESSION AND ACTIVITY OF FOLATE TRANSPORT PROTEINS IN RETINAL CELLS;374
14.6.7;HYPERHOMOCYSTEINEMIA AND RETINAL HEALTH;375
14.6.8;IN VITRO AND IN VIVO STUDIES OF HYERHOMOCYSTEINEMIA AND THE RETINA;376
14.6.9;TAKE-HOME MESSAGES;378
14.6.10;Acknowledgments;378
14.6.11;References;378
14.7;Chapter 36 - Selenium and Graves’ Orbitopathy;382
14.7.1;INTRODUCTION;382
14.7.2;SELENIUM;382
14.7.3;OXIDATIVE STRESS AND GRAVES’ ORBITOPATHY;383
14.7.4;HUMAN STUDIES;383
14.7.5;SELENIUM AND GRAVES’ ORBITOPATHY;384
14.7.6;TAKE-HOME MESSAGES;387
14.7.7;References;389
14.8;Chapter 37 - Zinc Deficiency and the Eye;392
14.8.1;INTRODUCTION;392
14.8.2;ZINC DEFICIENCY IN ANIMAL MODELS;392
14.8.3;ZINC DEFICIENCY AND RETINAL PHYSIOLOGIC MANIFESTATIONS;393
14.8.4;ZINC AND AGE-RELATED MACULAR DEGENERATION;394
14.8.5;ZINC AND CATARACT;396
14.8.6;ZINC AND OCULAR SURFACE DISEASE;396
14.8.7;TAKE-HOME MESSAGES;396
14.8.8;References;396
14.9;Chapter 38 - Impact of Impaired Maternal Vitamin A Status on Infant Eyes;398
14.9.1;INTRODUCTION;398
14.9.2;SYSTEMIC VITAMIN A REGULATION;398
14.9.3;VITAMIN A AND OCULAR EMBRYOGENESIS;399
14.9.4;VITAMIN A AND NORMAL OPHTHALMOLOGIC OCULAR FUNCTION;399
14.9.5;VITAMIN A AND HUMAN OCULAR DISEASE;399
14.9.6;VITAMIN A AND MULTISYSTEM DISEASE PHENOTYPES;400
14.9.7;NEONATAL VITAMIN A DEFICIENCY SYNDROMES CONSEQUENT TO MATERNAL HYPOVITAMINOSIS A;401
14.9.8;CONCLUSIONS AND FUTURE PERSPECTIVES;402
14.9.9;TAKE-HOME MESSAGES;402
14.9.10;References;402
14.10;Chapter 39 - Optic Neuropathies Caused by Micronutrient Deficiencies and Toxins;404
14.10.1;INTRODUCTION;404
14.10.2;EPIDEMIOLOGY AND ETIOPATHOGENESIS OF NUTRITIONAL OPTIC NEUROPATHIES;404
14.10.3;CLINICAL MANIFESTATIONS OF NUTRITIONAL OPTIC NEUROPATHIES;405
14.10.4;DIAGNOSIS OF NUTRITIONAL OPTIC NEUROPATHIES;405
14.10.5;VITAMIN B1 (THIAMINE) DEFICIENCY;406
14.10.6;VITAMIN B12 (COBALAMIN) DEFICIENCY;408
14.10.7;FOLATE DEFICIENCY;410
14.10.8;COPPER DEFICIENCY;411
14.10.9;EPIDEMIC NUTRITIONAL OPTIC NEUROPATHIES;411
14.10.10;REDEFINITION OF TOBACCO–ALCOHOL AMBLYOPIA;411
14.10.11;TAKE-HOME MESSAGES;412
14.10.12;References;412
14.11;Chapter 40 - Space Flight Ophthalmic Changes, Diet, and Vitamin Metabolism;414
14.11.1;INTRODUCTION;414
14.11.2;CATARACTS;414
14.11.3;VISION CHANGES AFTER LONG-DURATION SPACE FLIGHT;415
14.11.4;B-VITAMIN-DEPENDENT ONE-CARBON TRANSFER PATHWAY;415
14.11.5;OPTIC NEUROPATHY AND B VITAMINS;417
14.11.6;ENVIRONMENTAL FACTORS;418
14.11.7;TAKE-HOME MESSAGES;418
14.11.8;References;419
15;Section 9 -NUTRACEUTICALS;422
15.1;Chapter 41 - Flavonoids and Visual Function: Observations and Hypotheses;424
15.1.1;INTRODUCTION;424
15.1.2;REVIEW OF EXISTING EVIDENCE;424
15.1.3;NEW FINDINGS;428
15.1.4;CONCLUDING REMARKS;431
15.1.5;TAKE-HOME MESSAGES;431
15.1.6;References;431
15.2;Chapter 42 - Polyphenols in Vision and Eye Health;434
15.2.1;INTRODUCTION;434
15.2.2;BENEFICIAL EFFECTS OF FLAVONOIDS ON VISUAL SIGNAL TRANSDUCTION;434
15.2.3;BENEFICIAL ACTIONS OF FLAVONOIDS ON OCULAR DISEASES AND DISORDERS;435
15.2.4;BENEFICIAL INFLUENCES OF POLYPHENOLS ON OCULAR HEALTH EVIDENCED IN ANIMAL MODELS;436
15.2.5;TAKE-HOME MESSAGES;440
15.2.6;References;441
15.3;Chapter 43 - Natural Products and Retinal Ganglion Cells: Protective Roles of Edible Wild Vegetables Against Oxidative Stress in Retinal Ganglion Cells;444
15.3.1;INTRODUCTION;444
15.3.2;NEUROPROTECTION OF RETINAL GANGLION CELLS;445
15.3.3;USE OF NATURAL PRODUCTS TO PROTECT RETINAL GANGLION CELLS;445
15.3.4;USE OF WILD VEGETABLES TO PROTECT RETINAL GANGLION CELLS;448
15.3.5;CONCLUSIONS;452
15.3.6;TAKE-HOME MESSAGES;454
15.3.7;References;457
15.4;Chapter 44 - Plant Stanol and Sterol Esters and Macular Pigment Optical Density;462
15.4.1;AGE-RELATED MACULAR DEGENERATION;462
15.4.2;CAROTENOIDS;462
15.4.3;MACULAR PIGMENT;463
15.4.4;PLANT STEROLS AND STANOLS;464
15.4.5;TAKE-HOME MESSAGES;467
15.4.6;References;467
15.5;Chapter 45 - Seeds of Cornus officinalis and Diabetic Cataracts;472
15.5.1;INTRODUCTION;472
15.5.2;CORNUS OFFICINALIS SIEB. ET ZUCC;472
15.5.3;EXTRACTION AND ISOLATION OF COMPOUNDS FROM THE SEEDS OF CORNUS OFFICINALIS;473
15.5.4;INHIBITORY EFFECT ON ADVANCED GLYCATION END-PRODUCT FORMATION;474
15.5.5;INDIRECT ENZYME-LINKED IMMUNOSORBENT ASSAY OF THE INHIBITORY EFFECT ON AGE FORMATION BY INDIRECT ENZYME-LINKED IMMUNOSORBENT ASS...;475
15.5.6;INHIBITORY EFFECT ON ADVANCED GLYCATION END-PRODUCT–BOVINE SERUM ALBUMIN CROSS-LINKING TO COLLAGEN;475
15.5.7;BREAKING EFFECT ON ADVANCED GLYCATION END-PRODUCT–BOVINE SERUM ALBUMIN CROSS-LINKS FORMED IN VITRO;475
15.5.8;RAT LENS ALDOSE REDUCTASE INHIBITION ASSAY;477
15.5.9;RAT LENS ORGAN CULTURE AND ANALYSIS OF LENS OPACITY;477
15.5.10;CONCLUSIONS;477
15.5.11;TAKE-HOME MESSAGES;478
15.5.12;Acknowledgment;478
15.5.13;References;478
15.6;Chapter 46 - Lutein and the Retinopathy of Prematurity;480
15.6.1;INTRODUCTION;480
15.6.2;RETINOPATHY OF PREMATURITY: PATHOGENESIS;480
15.6.3;RETINOPATHY OF PREMATURITY: STAGING;481
15.6.4;MACULAR CAROTENOIDS: RETINAL DISTRIBUTION, METABOLISM, AND FUNCTION;482
15.6.5;LUTEIN AND THE RETINOPATHY OF PREMATURITY;483
15.6.6;TAKE-HOME MESSAGES;484
15.6.7;References;484
15.7;Chapter 47 - Dietary Wolfberry and Retinal Degeneration;486
15.7.1;INTRODUCTION;486
15.7.2;BOTANICAL ASPECTS OF WOLFBERRY;486
15.7.3;BIOACTIVE CONSTITUENTS OF WOLFBERRY;486
15.7.4;BIOAVAILABILITY OF WOLFBERRY;487
15.7.5;WOLFBERRY AND PREVENTION OF MACULAR DEGENERATION;488
15.7.6;WOLFBERRY POLYSACCHARIDES AND RETINITIS PIGMENTOSA;489
15.7.7;WOLFBERRY POLYSACCHARIDES AND GANGLION CELL SURVIVAL IN RETINAL ISCHEMIA AND GLAUCOMA;489
15.7.8;WOLFBERRY AND DIABETIC RETINAL DEGENERATION;489
15.7.9;POTENTIAL WOLFBERRY–DRUG INTERACTIONS AND SIDE EFFECTS;491
15.7.10;CONCLUSION;491
15.7.11;TAKE-HOME MESSAGES;491
15.7.12;Acknowledgments;492
15.7.13;References;492
15.8;Chapter 48 - Sea Buckthorn, Dry Eye, and Vision;494
15.8.1;INTRODUCTION;494
15.8.2;BIOACTIVE COMPOUNDS OF SEA BUCKTHORN BERRY;494
15.8.3;SEA BUCKTHORN OIL FOR DRY EYE;496
15.8.4;EFFECTS OF SEA BUCKTHORN ON COMPONENTS OF METABOLIC SYNDROME ASSOCIATED WITH RETINAL FUNCTION;498
15.8.5;TAKE-HOME MESSAGES;499
15.8.6;References;499
15.9;Chapter 49 - Resveratrol and the Human Retina;502
15.9.1;INTRODUCTION;502
15.9.2;STRUCTURE AND PROPERTIES OF RESVERATROL AND ITS DERIVATIVES;502
15.9.3;BIOAVAILABILITY AND SAFETY OF RESVERATROL;502
15.9.4;ANTIOXIDANT PROPERTIES OF RESVERATROL IN EXPERIMENTAL EYE DISEASE MODELS;503
15.9.5;PROAPOPTOTIC AND ANTIAPOPTOTIC PROPERTIES OF RESVERATROL FROM IN VITRO EXPERIMENTS;506
15.9.6;ANTIPROLIFERATIVE POTENTIAL OF RESVERATROL IN VITRO EXPERIMENTS;506
15.9.7;ANTIANGIOGENIC PROPERTIES OF RESVERATROL IN EXPERIMENTAL RETINA MODELS;507
15.9.8;RESVERATROL AS A SIRTUIN ACTIVATOR;509
15.9.9;RESVERATROL AS A LARGE-CONDUCTANCE CALCIUM-ACTIVATED POTASSIUM CHANNEL MODULATOR;510
15.9.10;TAKE-HOME MESSAGES;510
15.9.11;References;511
15.10;Chapter 50 - Acetyl-L-Carnitine as a Nutraceutical Agent in Preventing Selenite-Induced Cataract;514
15.10.1;INTRODUCTION;514
15.10.2;OXIDATIVE STRESS AND CATARACT FORMATION;514
15.10.3;SELENITE CATARACT;514
15.10.4;INFLUENCE OF NUTRITION SUPPLEMENTATION AND CATARACT PREVENTION;515
15.10.5;ACETYL-L-CARNITINE;515
15.10.6;TAKE-HOME MESSAGES;522
15.10.7;References;522
15.11;Chapter 51 - Taurine Deficiency and the Eye;526
15.11.1;INTRODUCTION;526
15.11.2;TAURINE DEPLETION AND PHOTORECEPTOR DEGENERATION;529
15.11.3;TAURINE DEPLETION AND RETINAL GANGLION CELL DEGENERATION;529
15.11.4;TAURINE-INDUCED MOLECULAR AND CELLULAR MECHANISMS;531
15.11.5;OTHER EYE STRUCTURES;532
15.11.6;TAKE-HOME MESSAGES;532
15.11.7;Acknowledgments;533
15.11.8;References;533
16;Section 10 - NUTRIGENOMICS AND
MOLECULAR BIOLOGY OF EYE
DISEASE;536
16.1;Chapter 52 - Gene Expression and the Impact of Antioxidant Supplements in the Cataractous Lens;538
16.1.1;INTRODUCTION;538
16.1.2;ANTIOXIDANTS AND PREVENTION OF CATARACT PROGRESSION;538
16.1.3;ROLE OF NUTRITION IN CATARACT PREVENTION: EPIDEMIOLOGIC STUDIES;538
16.1.4;POSSIBLE INDICATORS OF THE EFFECTS OF ANTIOXIDANT SUPPLEMENTS IN THE LENS;539
16.1.5;GENE EXPRESSION AS AN INDICATOR OF ANTIOXIDANT ENZYME PRODUCTION;539
16.1.6;G6PDH AND 18S RRNA GENE EXPRESSION IN LENTICULAR ANTERIOR CAPSULE AFTER OCUVITE+LUTEIN®;539
16.1.7;METHODOLOGIC CONSIDERATIONS OF MEASURING MESSENGER RNA EXPRESSION OF G6PDH AND 18S RRNA IN LENTICULAR ANTERIOR CAPSULE;541
16.1.8;POSSIBLE ROLE OF ANTIOXIDANT SUPPLEMENT IN INCREASED G6PDH AND 18S RRNA EXPRESSION;542
16.1.9;CONCLUSIONS;544
16.1.10;TAKE-HOME MESSAGES;544
16.1.11;References;544
16.2;Chapter 53 - The Adenosine A2a Receptor and Diabetic Retinopathy;546
16.2.1;INTRODUCTION;546
16.2.2;HYPERGLYCEMIA;546
16.2.3;ADENOSINE AND ITS RECEPTORS;547
16.2.4;OXIDATIVE STRESS AND THE ADENOSINE A2A RECEPTOR;548
16.2.5;VASCULAR CELLS, HYPERGLYCEMIA, AND ADENOSINE;549
16.2.6;NERVE CELLS;550
16.2.7;VARIANTS OF THE ADENOSINE A2A RECEPTOR AND PROLIFERATIVE DIABETIC RETINOPATHY;551
16.2.8;THERAPIES BASED ON THE ADENOSINE A2A RECEPTOR;551
16.2.9;TAKE-HOME MESSAGES;553
16.2.10;Acknowledgment;554
16.2.11;References;554
16.3;Chapter 54 - Effects of Environmental, Genetic, and Epigenetic Factors on Platelet Glycoproteins and the Development of Diabetic Retinopathy;556
16.3.1;INTRODUCTION;556
16.3.2;PATHOGENESIS OF DIABETIC RETINOPATHY;556
16.3.3;PLATELETS AND DIABETIC RETINOPATHY;557
16.3.4;C825T POLYMORPHISM OF THE G-PROTEIN-COUPLED RECEPTOR GENE;557
16.3.5;GENETIC FACTORS AND .2.1 INTEGRIN;558
16.3.6;GENETIC FACTORS AND GLYCOPROTEIN IIB-IIIA;558
16.3.7;EPIGENETIC FACTORS AND DIABETIC RETINOPATHY;560
16.3.8;ENVIRONMENTAL FACTORS, NUTRITION, AND DIABETIC RETINOPATHY;560
16.3.9;CONCLUSIONS;561
16.3.10;TAKE-HOME MESSAGES;561
16.3.11;Acknowledgment;562
16.3.12;References;562
16.4;Chapter 55 - Haptoglobin Genotype and Diabetic Retinopathy;564
16.4.1;INTRODUCTION;564
16.4.2;COMPLICATIONS OF DIABETES;565
16.4.3;HAPTOGLOBIN AND RISK OF DIABETIC RETINOPATHY;565
16.4.4;HAPTOGLOBIN AND ENDOTHELIAL DYSFUNCTION;565
16.4.5;HAPTOGLOBIN GENOTYPE AND TYPE OF DIABETES;566
16.4.6;ANIMAL MODELS OF DIABETIC RETINOPATHY;566
16.4.7;PREVALENCE OF MILD DIABETIC RETINOPATHY;567
16.4.8;TAKE-HOME MESSAGES;567
16.4.9;References;568
16.5;Chapter 56 - SLC23A2 Gene Variation, Vitamin C Levels, and Glaucoma;570
16.5.1;INTRODUCTION;570
16.5.2;ENVIRONMENTAL FACTORS IN GLAUCOMA;570
16.5.3;GENETIC FACTORS IN GLAUCOMA;571
16.5.4;NUTRITIONAL GENOMICS;571
16.5.5;VITAMIN C;573
16.5.6;SLC23A2 GENE VARIATION;574
16.5.7;CONCLUSIONS;575
16.5.8;TAKE-HOME MESSAGES;575
16.5.9;References;575
16.6;Chapter 57 - Molecular Pathways, Green Tea Extract, ( )-Epigallocatechin Gallate, and Ocular Tissue;578
16.6.1;INTRODUCTION;578
16.6.2;MOLECULAR PATHWAY OF GREEN TEA AND (-)-EPIGALLOCATECHIN GALLATE;578
16.6.3;BENEFICIAL EFFECTS OF GREEN TEA EXTRACT AND (-)-EPIGALLOCATECHIN GALLATE ON THE CORNEAL EPITHELIUM;579
16.6.4;ANTIOXIDANT EFFECTS OF (-)-EPIGALLOCATECHIN GALLATE ON HUMAN LENS EPITHELIAL CELLS;581
16.6.5;PROTECTIVE EFFECTS OF (-)-EPIGALLOCATECHIN GALLATE ON RETINAL PIGMENT EPITHELIUM CELLS;583
16.6.6;EFFECTS ON OCULAR HYPERTENSION AND GLAUCOMA;584
16.6.7;BENEFITS FOR RETINAL ISCHEMIA–REPERFUSION INJURY, OPHTHALMIC ARTERY, AND OPTIC NERVE;584
16.6.8;OTHER EFFECTS;585
16.6.9;HOW TO SUPPLY GREEN TEA EXTRACT AND EPIGALLOCATECHIN GALLATE;585
16.6.10;CONCLUSIONS;586
16.6.11;TAKE-HOME MESSAGES;586
16.6.12;References;586
16.7;Chapter 58 - Dietary Antioxidants, avß5 Integrin, and Ocular Protection: Long-Term Consequences of Arrhythmic Retinal Pigment Epithelium Phagocytosis;588
16.7.1;INTRODUCTION;588
16.7.2;ROLE OF INTEGRIN ADHESION RECEPTOR .V.5 IN PHAGOCYTOSIS;589
16.7.3;PRIMARY RETINAL PIGMENT EPITHELIUM DEFECTS IN MICE LACKING .V.5 INTEGRIN;590
16.7.4;ACTIN CYTOSKELETAL DAMAGE IN RETINAL PIGMENT EPITHELIUM CELLS;593
16.7.5;CONCLUSIONS;595
16.7.6;TAKE-HOME MESSAGES;595
16.7.7;References;596
16.8;Chapter 59 - Nutrition, Diet, the Eye, and Vision: Molecular Aspects of Vitamin A Binding Proteins and Their Importance in Vision;598
16.8.1;INTRODUCTION;598
16.8.2;ANALYTICAL METHODS;598
16.8.3;STRUCTURAL ANALYSIS;599
16.8.4;TAKE-HOME MESSAGES;606
16.8.5;Acknowledgment;606
16.8.6;References;606
16.9;Chapter 60 - Lycopene and Retinal Pigment Epithelial Cells: Molecular Aspects;608
16.9.1;INTRODUCTION;608
16.9.2;LYCOPENE AND ITS METABOLITES IN HUMAN OCULAR TISSUES;609
16.9.3;OXIDATIVE STRESS IN THE RETINAL PIGMENT EPITHELIUM;609
16.9.4;INFLAMMATION IN RETINAL PIGMENT EPITHELIUM;613
16.9.5;ANGIOGENESIS IN RETINAL PIGMENT EPITHELIUM;614
16.9.6;CELL PROLIFERATION AND MIGRATION OF RETINAL PIGMENT EPITHELIAL CELLS;614
16.9.7;CONCLUSIONS;615
16.9.8;TAKE-HOME MESSAGES;616
16.9.9;References;616
16.10;Chapter 61 - Ascorbate Transport in Retinal Cells and Its Relationship with the Nitric Oxide System;620
16.10.1;INTRODUCTION;620
16.10.2;VITAMIN C;620
16.10.3;L-ARGININE AND NITRIC OXIDE;623
16.10.4;NITRIC OXIDE REGULATION OF ASCORBATE SYSTEM;628
16.10.5;TAKE-HOME MESSAGES;629
16.10.6;References;629
17;Section - 11 ADVERSE EFFECTS AND
REACTIONS;632
17.1;Chapter 62 - Dietary Hyperlipidemia and Retinal Microaneurysms;634
17.1.1;INTRODUCTION;634
17.1.2;CARDIOVASCULAR RISK FACTORS, ENDOTHELIAL DYSFUNCTION, AND INFLAMMATION;634
17.1.3;HYPERCHOLESTEROLEMIA AND RETINAL VASCULAR LESIONS;634
17.1.4;OBESITY, METABOLIC SYNDROME, AND SIGNS OF RETINOPATHY;635
17.1.5;GLYCEMIA AND DIABETIC RETINOPATHY;636
17.1.6;BLOOD PRESSURE AND RETINAL VASCULAR LESIONS;636
17.1.7;HOW TO KEEP HEALTHY;638
17.1.8;TAKE-HOME MESSAGES;638
17.1.9;References;638
17.2;Chapter 63 - Iron-Induced Retinal Damage;640
17.2.1;INTRODUCTION;640
17.2.2;SYSTEMIC AND RETINAL DISEASES WITH EXCESS IRON;640
17.2.3;IMPORTATION, STORAGE, AND EXPORTATION OF IRON IN THE EYE;642
17.2.4;THE ROLE OF NUTRITION AND RETINAL IRON;643
17.2.5;NUTRITIONAL IRON AND EYE DISEASE;644
17.2.6;PREVENTION AND THERAPEUTICS;644
17.2.7;TAKE-HOME MESSAGES;645
17.2.8;References;645
17.3;Chapter 64 - Hypoglycemia and Retinal Cell Death;648
17.3.1;INTRODUCTION;648
17.3.2;GLUCOSE METABOLISM IN THE RETINA;648
17.3.3;HYPOGLYCEMIA;649
17.3.4;MICROARRAY ANALYSIS AND MAJOR PATHWAYS INVOLVED;652
17.3.5;APOPTOSIS AND CELL DEATH;652
17.3.6;CONCLUSIONS;655
17.3.7;TAKE-HOME MESSAGES;655
17.3.8;References;655
17.4;Chapter 65 - Yellow Corneal Rings, Age-Related Macular Degeneration, and Carotenoid Supplementation and Metabolism;658
17.4.1;AGE-RELATED MACULAR DEGENERATION, AREDS1, AND AREDS2;658
17.4.2;LIMBAL CIRCULATION, YELLOW RINGS, AND OTHER PERIPHERAL CORNEAL RINGS;659
17.4.3;CAROTENOID AND VITAMIN A METABOLISM AND ITS CLINICAL SIGNIFICANCE;660
17.4.4;References;661
18;Index;664
19;Color Plates;686


Contributors
WinsomeAbbott-JohnsonPrincess Alexandra Hospital, Woolloongabba, Qld, Australia NiyaziAcarEye and Nutrition Research Group, University of Burgundy, Centre des Sciences du Goût et de l’Alimentation, Dijon, France VaishaliAgteAgharkar Research Institute, Pune, India DanielAgudeloDepartment of Chemistry–Biology, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada Maria AntoniettaAlteaDepartment of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy R.A.ArmstrongVision Sciences, Aston University, Birmingham, UK TinAungSingapore National Eye Centre, Singapore BahriAyd?nIstanbul Medeniyet University Medical School, Istanbul, Turkey FereshtehBahmaniKashan University of Medical Sciences, Kashan, Iran D.BalmerIRO, Institute for Research in Ophthalmology, Sion, Switzerland S. ZahraBathaieTarbiat Modares University, Tehran, Iran LynneBellSchool of Psychology and Clinical Language Sciences, University of Reading, Reading, UK Tos T.J.M.BerendschotUniversity Eye Clinic Maastricht, Maastricht, The Netherlands Paul S.BernsteinMoran Eye Center, University of Utah School of Medicine, Salt Lake City, UT Brian M.BeschMoran Eye Center, University of Utah School of Medicine, Salt Lake City, UT PhilippeBourassaDepartment of Chemistry–Biology, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada R.B.Bozard Department of Cellular Biology and Anatomy, Georgia Health Sciences University, Augusta, GA, USA Department of Ophthalmology, Georgia Health Sciences University, Augusta, GA, USA LionelBretillonEye and Nutrition Research Group, University of Burgundy, Centre des Sciences du Goût et de l’Alimentation, Dijon, France Alain M.BronEye and Nutrition Research Group, University of Burgundy, Centre des Sciences du Goût et de l’Alimentation, Dijon, France BenjaminBuaudITERG – Equipe Nutrition Métabolisme & Santé, Bordeaux, France Gabriëlle H.S.BuitendijkErasmus Medical Center, Rotterdam, The Netherlands Laurie T.ButlerSchool of Psychology and Clinical Language Sciences, University of Reading, Reading, UK AldoCaporossiPoliclinico Universitario A. Gemelli, Rome, Italy StefanoCaragiuliAzienda Ospedaliera Universitaria Senese, Siena, Italy ChloéCartierDépartement de psychologie, Université du Québec à Montréal, Montréal, Québec, Canada CristinaCartigliaUniversity of Genoa, Genoa, Italy Chi-MingChan School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan Min-LeeChangJean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA Bashira A.CharlesCenter for Research on Genomic and Global Health, National Human Genome Research Institute, Bethesda, Maryland, USA Emily Y.ChewNational Eye Institute, National Institutes of Health, Bethesda, Maryland, USA Ching-YuCheng Singapore Eye Research Institute, Singapore Yong Loo Lin School of Medicine, National University of Singapore Chung-JungChiuJean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA DeepikaChopraGovernment Medical College, Amritsar, Punjab, India PatriciaCoelho de VelascoInstituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil DavidComanDepartment of Metabolic Medicine, The Royal Children’s Hospital, Brisbane, Queensland, Australia NicoleCombeITERG – Equipe Nutrition Métabolisme & Santé, Bordeaux, France DoloresCorella Genetic and Molecular Epidemiology Unit, Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain CIBER Fisiopatología de la Obesidad y Nutrición, ISCIII, Valencia, Spain M.Cossenza Program of Neurosciences, Fluminense Federal University, Niterói, Brazil Departament of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil SimonettaCostaDivision of Neonatology, Catholic University of Rome, Rome, Italy Catherine P.Creuzot-GarcherEye and Nutrition Research Group, University of Burgundy, Centre des Sciences du Goût et de l’Alimentation, Dijon, France MariaCristina de Oliveira IzarCardiology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil R.P.CubbidgeVision Sciences, Aston University, Birmingham, UK AlyssaCwangerFM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA CécileDelcourt Universite de Bordeaux, Bordeaux, France Inserm, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France Marie-NoëlleDelyfer Universite de Bordeaux, Bordeaux, France Inserm, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France Service d’Ophtalmologie, CHU de Bordeaux, Bordeaux, France I.C.L.DomithProgram of Neurosciences, Fluminense Federal University, Niterói, Brazil DavidDunaiefMedical Compass, MD Private Practice, New York, USA Joshua L.DunaiefFM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA RajanElanchezhianDepartment of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, India Andrew W.EllerRetina Service, UPMC Eye Center, University of Pittsburgh School of Medicine, and The Eye and Ear Institute, Pittsburgh, PA T.G.EncarnaçãoProgram of Neurosciences, Fluminense Federal University, Niterói, Brazil MesutErdurmu?Abant Izzet Baysal University Medical School, Bolu, Turkey EvangelinaEspósitoUniversity Clinic Reina Fabiola, Catholic University of Córdoba, Córdoba,...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.