Handel / Hamel | Chemokines, Part A | E-Book | www.sack.de
E-Book

E-Book, Englisch, 400 Seiten

Handel / Hamel Chemokines, Part A


1. Auflage 2009
ISBN: 978-0-08-095697-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 400 Seiten

ISBN: 978-0-08-095697-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



The understanding of chemokines, the proteins that control the migration of cells, and their receptors, is critical to the study of causes and therapies for a wide range of human diseases and infections, including certain types of cancer, inflammatory diseases, HIV, and malaria. This volume, focusing on chemokines as potential targets for disease intervention, and its companion volume (Methods in Enzymology volume 462, focusing on chemokine structure and function, as well as signaling) provide a comprehensive overview and time-tested protocols in this field, making it an essential reference for researchers in the area.
Along with its companion volume, provides a comprehensive overview of chemokine methods, specifically as related to potential disease therapy
Gathers tried, tested, and trusted methods and techniques from top players in chemokine research
Provides an essential reference for researchers in the field

Handel / Hamel Chemokines, Part A jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Methods In Enzymology: Chemokines, Part A;4
3;Copyright Page;5
4;Contents;6
5;Contributors;14
6;Preface;22
7;Section 1: Chemokines and Receptors in Disease;24
7.1;Chapter 1: Chapter One Chemokines in Human Breast Tumor Cells: Modifying Their Expression Levels and Determining Their Effects ;26
7.1.1;1. Introduction;27
7.1.2;2. Modifying Chemokine Expression in Breast Tumor Cells;28
7.1.3;3. Establishment of Primary Local Breast Tumors and Pulmonary Metastases;32
7.1.4;Acknowledgments;38
7.1.5;References;38
7.2;Chapter 2: Chapter 2 CCR5 Pharmacology Methodologies and Associated Applications;40
7.2.1;1. Introduction;41
7.2.2;2. CCR5 Signaling Assays and Application to Quantify and Characterize Ligand-Dependent Agonism, Antagonism, and Inverse Ag;42
7.2.3;3. CCR5-Associated Ligand-Binding Assays;56
7.2.4;4. Surrogate In Vitro Antiviral Assays;61
7.2.5;5. CCR5 Site-Directed Mutagenesis and Ligand Docking Studies;66
7.2.6;6. Non-HIV Indications-Associated Studies, Human CCR5 Knock-In Mice;71
7.2.7;References;75
7.3;Chapter 3: Chapter Three CXCR4 and Mobilization of Hematopoietic Precursors;80
7.3.1;1. Introduction;81
7.3.2;2. HSPC Mobilizing Agents that Target the CXCL12/CXCR4 Axis;82
7.3.3;3. Donor Selection for HSPC Mobilization;87
7.3.4;4. Flow Cytometric Enumeration of Mobilized HSPCs;88
7.3.5;5. Dosing and Kinetics of HSPC Mobilization by G-CSF and Plerixafor;89
7.3.6;6. Flow Cytometric Analysis of CXCR4 Expression on Human CD34+ Subsets;92
7.3.7;7. Functional Characterization of Mobilized HSPCs;96
7.3.8;8. Concluding Remarks;103
7.3.9;Acknowledgment;103
7.3.10;References;103
7.4;Chapter 4: Double-Label Nonradioactive ;114
7.4.1;1. Introduction;115
7.4.2;2. Basic Protocol for ISH (Using Digoxygenin-Labeled Probe);116
7.4.3;3. Comments;124
7.4.4;References;125
7.5;Chapter 5: Chapter Five Expression of Chemokines and Chemokine Receptors in Human Colon Cancer;128
7.5.1;1. Introduction;129
7.5.2;2. Materials and Methods;131
7.5.3;3. Results;133
7.5.4;4. Discussion;140
7.5.5;Acknowledgments;142
7.5.6;References;142
8;Section II: Chemokine Related Proteins from Pathogens;146
8.1;Chapter 6: Kaposi's Sarcoma Virally Encoded, G-Protein-Coupled Receptor: A Paradigm for Paracrine Transformation;148
8.1.1;1. Introduction;150
8.1.2;2. Cloning of vGPCR;151
8.1.3;3. Assaying vGPCR Transforming Activity In Vitro;153
8.1.4;4. vGPCR Transforming Activity In Vivo Using Xenograft Systems;153
8.1.5;5. In Vivo Targeted Infection Using the TVA-RCAS System;154
8.1.6;6. vGPCR-Induced Paracrine Transformation;157
8.1.7;7. Characterization of vGPCR-Induced Molecular Signaling;158
8.1.8;8. Evaluation of Activation of Second-Messenger-Generating Systems;159
8.1.9;9. Activation of Signal-Transducing Protein Kinases and Small GTPases;160
8.1.10;10. Akt Kinase Assay;160
8.1.11;11. vGPCR Stimulated Activation of Rac1-Pulldown Assays;161
8.1.12;12. Western Blotting Using Phospho-Specific Antibodies;163
8.1.13;13. Activation of Transcription Factors;164
8.1.14;14. Global Changes in Gene Expression: Microarray Analysis;164
8.1.15;15. NFkappaB Luciferase Assays;166
8.1.16;16. NFkappaB Binding Assays;167
8.1.17;17. Nuclear Translocation of NFkappaB;169
8.1.18;Acknowledgments;170
8.1.19;References;170
8.2;Chapter 7: Chapter 7 Pharmacological and Biochemical Characterization of Human Cytomegalovirus-Encoded G Protein-Coupled Recept;174
8.2.1;1. Introduction;175
8.2.2;2. Virally Encoded GPCR Engineering;177
8.2.3;3. vGPCR Expression, Trafficking, and Radioligand Binding;179
8.2.4;4. vGPCR-Induced Signal Transduction;182
8.2.5;5. vGPCR-Induced Oncogenesis;185
8.2.6;6. Generation of Recombinant HCMV Strains by Markerless Bacterial Artificial Chromosome Mutagenesis;188
8.2.7;7. Conclusions;190
8.2.8;Acknowledgments;190
8.2.9;References;190
8.3;Chapter 8: Chapter 8 Identification and Characterization of Virus-Encoded Chemokine Binding Proteins;196
8.3.1;1. Introduction;197
8.3.2;2. Methods for Studying Chemokine-Binding Proteins;198
8.3.3;Acknowledgments;212
8.3.4;References;212
8.4;Chapter 9: Chapter Nine The Chemokine-Binding Protein M3 as a Tool to Understand the Chemokine Network ;216
8.4.1;1. Introduction;216
8.4.2;2. Generation of Transgenic Mice Expressing M3 in Insulin-Producing beta Cells;218
8.4.3;3. M3 Expression in Islets of Langerhans Blocks CCL2-, CCL21-, and CXCL13-Induced Migration of Cells to Isle;221
8.4.4;4. M3 Expression in beta Cells Blocks Cellular Infiltration and Prevents Diabetes Development;222
8.4.5;5. Generation of a Conditional Transgenic System for Expression of M3;225
8.4.6;6. Concluding Remarks;227
8.4.7;References;228
8.5;Chapter 10: Chapter Ten M-T7: Measuring Chemokine-Modulating Activity;232
8.5.1;1. Introduction;233
8.5.2;2. Protein Expression;236
8.5.3;3. Quantifying the Effects of M-T7 In Vitro and Ex Vivo;239
8.5.4;4. Quantifying the Effects of M-T7 on Vascular Inflammatory Responses in Rodent Vascular Transplant Models;243
8.5.5;5. Preclinical Toxicity Testing;248
8.5.6;References;250
9;Section III: Atypical and Novel Chemoattractants and Receptors;252
9.1;Chapter 11: Chapter Eleven Role of the Chemokine Scavenger Receptor D6 in Balancing Inflammation and Immune Activation;254
9.1.1;1. Introduction;255
9.1.2;2. Methods;255
9.1.3;3. Results;258
9.1.4;4. Discussion;259
9.1.5;References;264
9.2;Chapter 12: Chapter 12 Structure-Function Dissection of D6, an Atypical Scavenger Receptor;268
9.2.1;1. Introduction;269
9.2.2;Acknowledgments;283
9.2.3;References;283
9.3;Chapter 13: Chapter Thirteen Modeling Small Molecule-Compound Binding to G-Protein-Coupled Receptors;286
9.3.1;1. Introduction;287
9.3.2;2. Similarity and Differences in the Crystal Structures of Class-A GPCRs Solved to Date;288
9.3.3;3. GPCR Modeling Methods;289
9.3.4;4. Computational Methods for Receptor Flexibility and Ligand-Induced Conformational Changes in GPCRs;294
9.3.5;5. Validation of GPCR-Ligand Models;297
9.3.6;6. Conclusions;307
9.3.7;References;309
9.4;Chapter 14: Chapter Fourteen Elucidation of Chemerin and Chemokine-Like Receptor-1 Function in Adipocytes by Adenoviral-Mediate;312
9.4.1;1. Introduction;313
9.4.2;2. The 3T3-L1 Cell Model for Adipogenesis and Adipocyte Metabolism;315
9.4.3;3. RNA Interference;316
9.4.4;4. Methods for Adenoviral shRNA Knockdown of Chemerin and CMKLR1 in 3T3-L1 Cells;320
9.4.5;5. Concluding Remarks;332
9.4.6;Acknowledgments;332
9.4.7;References;332
10;Section IV: Chemokine Signaling;336
10.1;Chapter 15: Chapter Fifteen Characterization of Chemokine Receptor CXCR2 Interacting Proteins Using a Proteomics Approach to De;338
10.1.1;1. Introduction;339
10.1.2;2. Validation of the Interaction of Novel Proteins with CXCR2;343
10.1.3;3. Mutational Analysis of Residues at Interactive Interface of CXCR2 and CXCR2-Binding Proteins;347
10.1.4;4. Radioactive Phosphorylation of CXCR2 Interacting Proteins;348
10.1.5;5. Chemotaxis Assay;349
10.1.6;6. Conclusions;352
10.1.7;Acknowledgments;352
10.1.8;References;352
10.2;Chapter 16: Phosphoproteomic Analysis of Chemokine Signaling Networks;354
10.2.1;1. Introduction;355
10.2.2;2. Methods;357
10.2.3;3. Summary;366
10.2.4;Acknowledgments;367
10.2.5;References;368
10.3;Chapter 17: Chapter Seventeen Monitoring NF-kappaB Mediated Chemokine Transcription in Tumorigenesis;380
10.3.1;1. Introduction;381
10.3.2;2. Development of NF-kappaB Reporter Model for Tumors;381
10.3.3;3. Bioluminescent Imaging of Intratumor Signaling of Anesthetized Mice;382
10.3.4;4. Cell-Based Assays for Kinase and Transcriptional Activity In Vitro;385
10.3.5;5. Peripheral Spying of Intratumoral Signaling of Conscious Mice;386
10.3.6;Acknowledgments;387
10.3.7;References;387
10.4;Chapter 18: Chapter Eighteen Analysis of Chemokine Receptor Endocytosis and Intracellular Trafficking;390
10.4.1;1. Introduction;391
10.4.2;2. Receptor Detection;393
10.4.3;3. Cells;395
10.4.4;4. Monitoring Receptor Endocytosis;397
10.4.5;5. Monitoring Receptor Recycling;399
10.4.6;6. Monitoring Receptor Degradation;401
10.4.7;7. Electron Microscopy Analysis of Receptor Internalization;404
10.4.8;Acknowledgments;408
10.4.9;References;408
10.5;Chapter 19: Chapter Nineteen Measuring the Proximity of T-Lymphocyte CXCR4 and TCR by Fluorescence Resonance Energy Transfer (F;412
10.5.1;1. Introduction;413
10.5.2;2. Assaying CXCR4-TCR Proximity via the PE/APC mAb FRET Approach;419
10.5.3;3. Assaying CXCR4-TCR Proximity via the CFP/YFP Fusion Protein Approach;425
10.5.4;4. Concluding Remarks;429
10.5.5;References;429
10.6;Chapter 20: Chapter Twenty Expression of CXCR4, a G-Protein-Coupled Receptor for CXCL12 in Yeast: Identification of New-Generat;432
10.6.1;1. Introduction;433
10.6.2;2. Methods and Discussion;435
10.6.3;3. Summary;441
10.6.4;References;443
10.7;Chapter 21: Chapter Twenty-one Ubiquitination of Chemokine Receptors;446
10.7.1;1. Introduction;447
10.7.2;2. Cell Culture and Transfections;449
10.7.3;3. Agonist Treatment and Ubiquitination Assay;450
10.7.4;4. E3 Ubiquitin Ligase AIP4 Mediates Ubiquitination of CXCR4;452
10.7.5;References;454
11;Author Index ;456
12;Subject Index;484
13;Color Plates;493



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.