E-Book, Englisch, 259 Seiten, eBook
Reihe: Grundlehren Text Editions
Hiriart-Urruty / Lemaréchal Fundamentals of Convex Analysis
Erscheinungsjahr 2012
ISBN: 978-3-642-56468-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 259 Seiten, eBook
Reihe: Grundlehren Text Editions
ISBN: 978-3-642-56468-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Introduction: Notation, Elementary Results.- Convex Sets: Generalities; Convex Sets Attached to a Convex Set; Projection onto Closed Convex Sets; Separation and Applications; Conical Approximations of Convex Sets.- Convex Functions: Basic Definitions and Examples; Functional Operations Preserving Convexity; Local and Global Behaviour of a Convex Function; First- and Second-Order Differentiation.- Sublinearity and Support Functions: Sublinear Functions; The Support Function of a Nonempty Set; Correspondence Between Convex Sets and Sublinear Functions.- Subdifferentials of Finite Convex Functions: The Subdifferential: Definitions and Interpretations; Local Properties of the Subdifferential; First Examples; Calculus Rules with Subdifferentials; Further Examples; The Subdifferential as a Multifunction.- Conjugacy in Convex Analysis: The Convex Conjugate of a Function; Calculus Rules on the Conjugacy Operation; Various Examples; Differentiability of a Conjugate Function.