E-Book, Englisch, Band Volume 30, 395 Seiten, Web PDF
Reihe: Studies in Applied Mechanics
Kaliski / Solarz Vibrations and Waves (Part B: Waves)
1. Auflage 2013
ISBN: 978-1-4832-9160-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Vibrations and Waves (Part B: Waves)
E-Book, Englisch, Band Volume 30, 395 Seiten, Web PDF
Reihe: Studies in Applied Mechanics
ISBN: 978-1-4832-9160-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth of information about dynamical phenomena in different media and fields, which will be of considerable interest to both scientists and graduate students.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Vibrations and Waves;4
3;Copyright Page;5
4;Table of Contents;8
5;Preface;6
6;PART I: Waves in Elastic and Inelastic Media;14
6.1;Introduction;14
6.2;Chapter 1. Remarks Concerning Tensor Notation;15
6.3;Chapter 2. Equations of motion for an elastic medium;19
6.3.1;2.1 Fundamentals of the theory of deformation and kinematics;19
6.3.2;2.2 Conservation laws and internal forces;23
6.3.3;2.3 Constitutive equations;25
6.3.4;2.4 Equations of motion for a non-linear elastic medium;27
6.3.5;2.5 Equations of the linear theory of elasticity;28
6.3.6;2.6 Special cases. Types of anisotropy. Isotropy;29
6.4;Chapter 3. Rheological models of inelastic bodies;31
6.4.1;3.1 Fundamental concepts and formulations;31
6.4.2;3.2 Equations of motion for linear rheological models;33
6.5;Chapter 4. Equations of motion for micropolar and non-local media;35
6.6;Chapter 5. Equations for coupled fields;39
6.6.1;5.1 Equations of thermo-elasticity;39
6.6.2;5.2 Interaction of electromagnetic fields with material media;41
6.6.3;5.3 Magneto-elasticity and thermomagneto-elasticity;43
6.6.4;5.4 Dielectric and piezo-electric media;45
6.6.5;5.5 Equations of magneto-elastic-spin fields;46
6.6.6;5.6 Other variants of coupled fields;48
6.7;Chapter 6. General specificities of the formulation of boundary-value problems;50
6.8;Chapter 7. Properties of wave motion in an elastic medium;53
6.8.1;7.1 General laws of elastic-wave propagation;54
6.8.2;7.2 Energy properties of wave motion;61
6.9;Chapter 8. Solving functions and elastic potentials;65
6.9.1;8.1 Solving (displacement) functions;65
6.9.2;8.2 Elastic potentials;66
6.10;Chapter 9. The solution of boundary problems for the wave equation and for an elastic medium;69
6.10.1;9.1 Plane waves;69
6.10.2;9.2 Spherical waves;70
6.10.3;9.3 Solutions of initial problems;72
6.10.4;9.4 Solutions of non-homogeneous problems;75
6.11;Chapter 10. Waves in micropolar and non-local media;78
6.11.1;10.1 Waves in a micropolar medium;78
6.11.2;10.2 Waves in a non-local medium;81
6.12;Chapter 11. Waves in coupled fields;82
6.12.1;11.1 Thermo-elastic waves in an isotropic medium;82
6.12.2;11.2 Waves in a magneto-elastic medium;84
6.12.3;11.3 Waves in piezo-electric and piezo-semiconducting media;87
6.12.4;11.4 Waves in a ferromagnetic medium;88
6.13;Chapter 12. Reflection, refraction and diffraction of elastic waves;91
6.13.1;12.1 Reflection and refraction of elastic waves;91
6.13.2;12.2 Diffraction of elastic waves;94
6.14;Chapter 13. Approximate and asymptotic methods of solving wave problems;96
6.14.1;13.1 Methods of geometric optics;96
6.14.2;13.2 Methods of characteristics;98
6.14.3;13.3 Numerical methods;98
6.15;Bibliographic notes;99
6.16;References to Part I;100
7;Part II: Plastic waves;104
7.1;introduction;104
7.2;Chapter 1. Dynamic properties of materials;106
7.2.1;1.1 Dynamic properties of metals;106
7.2.2;1.2 Equations of state for solids dynamically loaded by high pressures;111
7.2.3;1.3 Dynamic properties of non-cohesive soils;116
7.3;Chapter 2. Fundamental concepts of non-stationary wave motion;124
7.3.1;2.1 Surfaces of discontinuity, definitions of wave types;124
7.3.2;2.2 The velocity of a surface of discontinuity in motion;126
7.3.3;2.3 Conditions at discontinuity fronts;127
7.3.4;2.4 Characteristics and relationships corresponding to the characteristics;129
7.4;Chapter 3. Propagation of longitudinal stress waves in thin inelastic bars of compact cross-section;132
7.4.1;3.1 Longitudinal loading wave in a semi-infinite homogeneous elastic-plasicbar;132
7.4.2;3.2 Longitudinal unloading wave in a semi-infinite, homogeneous elastoplastic bar;139
7.4.3;3.3 Propagation of plane longitudinal waves in elastic/viscoplastic bars;155
7.4.4;3.4 Plastic-wave resonance;167
7.5;Chapter 4. Spherical and cyhndrical waves;176
7.5.1;4.1 General remarks;176
7.5.2;4.2 Spherical waves in an elasto-plastic medium with elastic unloading;177
7.5.3;4.3 Propagation of a spherical unloading wave in an elasto-plastic medium with rigid unloading;183
7.5.4;4.4 Propagation of a spherical stress wave in an elastic/viscoplastic medium;186
7.5.5;4.5 Propagation of cylindrical stress waves in an elastic/viscoplastic layered medium;193
7.6;Chapter 5. Shock waves in solids;204
7.6.1;5.1 Prehminary remarks;204
7.6.2;5.2 A characterization of the changes in parameters at the shock-wavefront;206
7.6.3;5.3 Analysis of the process of formation of shock waves in continuous media;213
7.6.4;5.4 Propagation of a plane shock wave in a bilinear elastic-plastic medium;219
7.6.5;5.5 The unloading shock wave;226
7.7;References to Part II;231
8;Part III: Surface waves in solids;238
8.1;Introduction;238
8.2;Chapter 1. Elastic surface waves in a half-space and a layer;239
8.2.1;1.1 Rayleigh waves;239
8.2.2;1.2 Waves in visco-elastic media;242
8.2.3;1.3 Surface waves in inhomogeneous media;244
8.2.4;1.4 Surface waves in anisotropic media;251
8.2.5;1.5 Lamb's problem;254
8.2.6;1.6 Waves in a layer;257
8.3;Chapter 2. Waves on curved surfaces;260
8.3.1;2.1 Waves in an infinite cylinder and on the surface of a cylindrical void;260
8.3.2;2.2 Waves on a spherical surface;267
8.3.3;2.3 Waves on surfaces with arbitrary curvature;268
8.4;Chapter 3. Surface waves in non-local media and in media with a microstructure;274
8.4.1;3.1 Surface waves in non-local media;274
8.4.2;3.2 Surface waves in microstructural media;279
8.5;Chapter 4. Surface elastic waves, with consideration of quantum effects;284
8.5.1;4.1 Preliminary remarks;284
8.5.2;4.2 Initial equations;284
8.5.3;4.3 General solution for the surface wave. Dispersion equations;286
8.5.4;4.4 Special case for a wavelength comparable with the lattice parameter;287
8.6;Chapter 5. Random surface waves;289
8.6.1;5.1 Surface waves in a stochastic medium with a deterministic surface;289
8.6.2;5.2 Surface waves in a medium with a stochastic surface;292
8.7;Chapter 6. Surface waves in piezo-electric materials and piezosemiconductors;296
8.7.1;6.1 Surface waves in piezo-electric materials;296
8.7.2;6.2 Surface waves in piezoquartz;297
8.7.3;6.3 Surface waves in piezosemiconductors;303
8.8;Chapter 7. Amplification of surface waves in piezosemiconductors;311
8.8.1;7.1 Introductory remarks;311
8.8.2;7.2 Continuous amphfication of ultrasonic surface waves in crystals of thewurtzite group, taking into acount diffusion, recombination and trapping;311
8.9;Chapter 8. Magneto-elastic surface waves;318
8.9.1;8.1 Introductory remarks;318
8.9.2;8.2 Magneto-elastic waves on a half-space surface;318
8.9.3;8.3 Waves on the surface of a cylinder;324
8.9.4;8.4 Elastospin surface waves;331
8.9.5;8.5 Surface electromagnetospin waves in ferropiezosemiconductors;335
8.10;Chapter 9. Surface waveguide;338
8.11;Other important problems concerning surface waves;344
8.12;References to Part III;346
9;Part IV: Stochastic analysis of wave processes;352
9.1;Chapter 1. Mathematical preliminaries;352
9.1.1;1.1 Probability and random variables;352
9.1.2;1.2 Random functions;359
9.1.3;1.3 Stochastic differential equations;369
9.2;Chapter 2. Wave propagation in stochastic media;373
9.2.1;2.1 General remarks;373
9.2.2;2.2 Method of small perturbations; the Born approximation;374
9.2.3;2.3 Smoothing method; coherent waves in a stochastic medium;379
9.2.4;2.4 Remarks;384
9.3;Chapter 3. Stochastic waves in bounded media;386
9.3.1;3.1 Waves in bounded stochastic media;386
9.3.2;3.2 Reflection from a surface with random impedance;387
9.4;References to Part IV;391
10;Index;392