E-Book, Englisch, 640 Seiten
Kasapis / Norton / Ubbink Modern Biopolymer Science
1. Auflage 2009
ISBN: 978-0-08-092114-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Bridging the Divide between Fundamental Treatise and Industrial Application
E-Book, Englisch, 640 Seiten
ISBN: 978-0-08-092114-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Industrialists developing new food and pharmaceutical products face the challenge of innovation in an increasingly competitive market that must consider incredient cost, product added-value, expectations of a healthy life-style, improved sensory impact, controlled delivery of active compounds and last, but not lease, product stability. While much work has been done to explore, understand, and address these issues, a gap has emerged between recent advances in fundamental knowledge and its direct application to product situations with a growing need for scientific input.
Modern Biopolymer Science matches science to application by first acknowledging the differing viewpoints between those working with low-solids and those working with high-solids, and then sharing the expertise of those two camps under a unified framework of materials science.
* Real-world utilisation of fundamental science to achieve breakthroughs in product development
* Includes a wide range of related aspects of low and high-solids systems for foods and pharmaceuticals
* Covers more than bio-olymer science in foods by including biopolymer interactions with bioactive compounds, issues of importance in drug delivery and medicinal chemistry
Autoren/Hrsg.
Weitere Infos & Material
1;Front cover;1
2;MODERN BIOPOLYMER SCIENCE;4
3;Copyright;5
4;Contents;6
5;Contributors;8
6;Preface;10
7;CHAPTER 1 Biopolymer Network Assembly:Measurement and Theory;12
7.1;1.1 Biopolymer Networks and Gels;12
7.2;1.2 Rheological Characterization of Biopolymer Gels;15
7.3;1.3 Theoretical Aspects;23
7.4;1.4 Conclusions;35
7.5;Acknowledgments;36
7.6;References;36
8;CHAPTER 2Gelation: Principles, Models and Applications to Proteins;40
8.1;2.1Introduction;40
8.2;2.2Modeling gel networks and their rheological behavior;41
8.3;2.3 Molecular mechanisms causing aggregation/gelation;69
8.4;2.4Gel structure type;76
8.5;2.5Gel Texture: oral processing, rheology/fracture, microstructure and sensory ANALYSIS;81
8.6;2.6Concluding remarks and future challenges;89
8.7;Acknowledgments;90
8.8;References;90
9;CHAPTER 3 Antifreeze Proteins:Their Structure,Binding and Use;104
9.1;3.1Antifreeze Proteins;104
9.2;3.2AFP Properties;109
9.3;3.3AFP Mechanism ofnbspFunction;129
9.4;3.4Applications of AFP;132
9.5;References;135
10;CHAPTER 4Biopolymers in Food Emulsions;140
10.1;4.1Introduction;140
10.2;4.2Emulsion Science And Technology Terminology;140
10.3;4.3Emulsion Droplet Characteristics;142
10.4;4.4Production Of Food Emulsions;145
10.5;4.5Emulsion Stability;148
10.6;4.6Physicochemical Properties of Food Emulsions;157
10.7;4.7Biopolymer Emulsifiers;163
10.8;4.8Biopolymer Texture Modifiers;171
10.9;4.9Conclusions;174
10.10;References;174
11;CHAPTER 5Functional Interactions in Gelling Biopolymer Mixtures;178
11.1;5.1Introduction;178
11.2;5.2Applicability of Polymer Blending Laws tonbspBiphasic Networks;181
11.3;5.3Phase Composition;183
11.4;5.4Blending Law Analyses of Gelatin-Calcium Pectinate Co-Gels;185
11.5;5.5Co-Gelation of Whey Protein Isolate (WPI) With Crosslinked Starch;189
11.6;5.6Associative Interactions;193
11.7;5.7Segregative Interactions in Single-Phase Mixtures;200
11.8;5.8Current Understanding and Future Challenges;204
11.9;Acknowledgments;205
11.10;References;205
12;CHAPTER 6Effect of Processing on Biopolymer Interactions;210
12.1;6.1Introduction;210
12.2;6.2Fluid/Sheared Gels;214
12.3;6.3Water-In-Water Emulsions;221
12.4;6.4 Processing Inside People;223
12.5;6.5The Future;231
12.6;Acknowledgments;232
12.7;References;232
13;CHAPTER 7Unified Application of the Materials-Science Approach to the Structural Properties of Biopolymer Co-Gels throughout the Industrially Relevant Level of Solids;236
13.1;7.1Introduction and Overview of Product Development Concerns That Necessitated Work In Phase-Separated Biopolymer Gels;236
13.2;7.2Experimental Methods of Pinpointing Phase-Separation Phenomena in Mixed Gels;238
13.3;7.3 Utilization Of Reaction Kinetics To Identify Phase-Separation Phenomena In Biopolymer Mixtures;246
13.4;7.4Quantitative Analysis Of The Structural Properties Of Binary Composite Gels;248
13.5;7.5Bridging The Divide Between The Low- And High-Solid Analyses In Binary Co-Gels;253
13.6;7.6Molecular Dynamics Of Bioactive Compounds In A High-Solids Carbohydrate Matrix;259
13.7;7.7Structural Properties Of Non-Aqueous Systems Used In Controlled Topical Delivery;262
13.8;7.8 Concluding Remarks;264
13.9;Acknowledgments;265
13.10;References;265
14;CHAPTER 8Mapping the Different States of Food Components Using State Diagrams;272
14.1;8.1 Introduction;272
14.2;8.2 Glass transition;272
14.3;8.3 Glass formation;276
14.4;8.4 Determination of glass transition;277
14.5;8.5 Water plasticization and plasticizers;278
14.6;8.6 Glass transition and water activity;280
14.7;8.7 Mechanical properties and relaxations;280
14.8;8.8 Stiffness;282
14.9;8.9 Collapse phenomena;282
14.10;8.10 Stickiness and caking;282
14.11;8.11 Glass transitions innbspfrozen foods;283
14.12;8.12 Crystallization and recrystallization;284
14.13;8.13 State diagrams and stability;284
14.14;References;286
15;CHAPTER 9Structural Advances in the Understanding of Carbohydrate Glasses;288
15.1;9.1 Carbohydrate Phase Behavior in the Prediction of Food and Pharmaceutical Stability;288
15.2;9.2 Effects of Water on the Structure of Carbohydrate Glasses;290
15.3;9.3 Molecular Packing in Glassy Carbohydrates;292
15.4;9.4 Structural Aspects ofnbspthe Aging of Carbohydrate Glasses;295
15.5;9.5 Dynamic Properties Close to the Glass Transition;296
15.6;9.6 Technological Implications;298
15.7;9.7 Conclusions and Perspectives;303
15.8;Acknowledgments;303
15.9;References;303
16;CHAPTER 10Biopolymer Films and Composite Coatings;306
16.1;10.1 Introduction;306
16.2;10.2 Mechanisms of Film Formation;306
16.3;10.3 Obtaining a Well-Matched Coating;309
16.4;10.4 Film-Application Stages and Methods for Testing Films;310
16.5;10.5 Selecting Biopolymers for Specific Applications;311
16.6;10.6 Edible Protective Films;312
16.7;10.7 Novel Products;325
16.8;10.8 Non-Food Gum Coatings;327
16.9;10.9 Next Generation of Edible Films;327
16.10;References;329
17;CHAPTER 11 Protein + Polysaccharide Coacervates and Complexes: From Scientific Background to their Application as Functional Ingredients in FoodProducts;338
17.1;11.1 Introduction;338
17.2;11.2 Historical Background;339
17.3;11.3 Structures formed during protein + polysaccharide associative phase separation;340
17.4;11.4 Protein + Polysaccharide Associative Phase Separation Kinetics;341
17.5;11.5 Internal structure of coacervates and interpolymeric complexes;345
17.6;11.6 Parameters affectingnbspprotein + polysaccharide attractive electrostatic interaction;350
17.7;11.7 Functional properties and potential applications of protein + polysaccharide complexes and coacervates;354
17.8;11.8 Main limitations for the use of coacervates and complexes in food applications and encapsulation;364
17.9;11.9 Perspectives;366
17.10;Acknowledgments;366
17.11;References;366
18;CHAPTER 12Single Molecule Techniques: Atomic Force Microscopy and Optical Tweezers;376
18.1;12.1 Atomic force microscopy;376
18.2;12.2 Surface forces;397
18.3;12.3 Conclusions;404
18.4;References;404
19;CHAPTER 13Dietary Fiber: Fulfilling the Promise of Added-Value Formulations;410
19.1;13.1 Recent developments in dietary fiber research;410
19.2;13.2 Technological properties of dietary fiber;422
19.3;13.3 Dietary fiber products: Chemistry, functional properties and applications in foods;424
19.4;13.4 Concluding remarks;451
19.5;References;452
20;CHAPTER 14 Resistant Starch in Vitro and in Vivo:Factors Determining Yield, Structure,and Physiological Relevance;460
20.1;14.1 Introduction;460
20.2;14.2 Measurement of resistant starch;461
20.3;14.3 Health benefits of RS;467
20.4;14.4 Effect of processing on resistant starch formation in foods;472
20.5;14.5 Model studies of isolated starches;491
20.6;14.6 Molecular and microstructural organization of resistant starches;495
20.7;14.7 Concluding remarks;507
20.8;References;511
21;CHAPTER 15Glycemic Response Reduction in Processed Food Products;522
21.1;15.1 Introduction;522
21.2;15.2 Processing and carbohydrate digestibility;522
21.3;15.3 The effect of extrusion parameters and processing on foodnbspquality;523
21.4;15.4 Manipulating the glycemic impact of extruded snack products;524
21.5;15.5 The link between slowly digestible and rapidly digestible carbohydrates and the glycemic impact of processed foods;525
21.6;15.6 Use of dietary fiber in manipulating starch digestibility;527
21.7;15.7 Conclusion;528
21.8;References;528
22;CHAPTER 16Biopolymers in ControlledhyphenRelease Delivery Systems;530
22.1;16.1 Introduction;530
22.2;16.2 Drug loading and release;532
22.3;16.3 Modeling diffusion;533
22.4;16.4 Higuchian model;535
22.5;16.5 Swelling;536
22.6;16.6 Temperature-sensitive hydrogels;537
22.7;16.7 Equilibrium swelling and the Flory-Rehner theory;538
22.8;16.8 Approaches to cross-linking;540
22.9;16.9 Glutaraldehyde;540
22.10;16.10 Genipin;541
22.11;16.11 Quinones and phenols;542
22.12;16.12 Polyelectrolyte crosshyphenlinking and complexes;543
22.13;16.13 Polymer-drug interactions;544
22.14;16.14 Collagen;545
22.15;16.15 Gelatin;547
22.16;16.16 Chitin and chitosan;551
22.17;16.17 Celluloses;553
22.18;16.18 Alginates;555
22.19;Summary;558
22.20;Acknowledgments;559
22.21;References;559
23;CHAPTER 17Amyloid Fibrils - Self-Assembling Proteins;570
23.1;17.1 Introduction to protein misfolding and fibril formation;570
23.2;17.2 Amyloid formation, nature and disease;571
23.3;17.3 Why is there such a great interest in amyloid fibrils?;572
23.4;17.4 Amyloid fibrils innbspnature;574
23.5;17.5 Protein folding and misfolding in the cell;575
23.6;17.6 Amyloid formation and biotechnology;575
23.7;17.7 Fibril formation pathways;576
23.8;17.8 Analytical techniques to study amyloid formation;577
23.9;17.9 Techniques for studying amyloid fibril formation;579
23.10;17.10 Detection of amyloid fibrils;585
23.11;17.11 Alternative models to the cross beta structure;590
23.12;17.12 Fibril formation kinetics;590
23.13;17.13 Conditions that promote fibril formation;590
23.14;17.14 Taking lessons from nature;595
23.15;17.15 Nanotubes and nanowires;596
23.16;17.16 Fibrillar gels;597
23.17;17.17 Future innovations?;599
23.18;17.18 Conclusions;599
23.19;References;600
24;CHAPTER 18Hydrocolloids and Medicinal Chemistry Applications;606
24.1;18.1 Drug delivery;606
24.2;18.2 Tissue engineering;615
24.3;18.3 Future horizons;625
24.4;Acknowledgments;625
24.5;References;625
25;Index;630