Kasapis / Norton / Ubbink | Modern Biopolymer Science | E-Book | www.sack.de
E-Book

E-Book, Englisch, 640 Seiten

Kasapis / Norton / Ubbink Modern Biopolymer Science

Bridging the Divide between Fundamental Treatise and Industrial Application
1. Auflage 2009
ISBN: 978-0-08-092114-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Bridging the Divide between Fundamental Treatise and Industrial Application

E-Book, Englisch, 640 Seiten

ISBN: 978-0-08-092114-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Industrialists developing new food and pharmaceutical products face the challenge of innovation in an increasingly competitive market that must consider incredient cost, product added-value, expectations of a healthy life-style, improved sensory impact, controlled delivery of active compounds and last, but not lease, product stability. While much work has been done to explore, understand, and address these issues, a gap has emerged between recent advances in fundamental knowledge and its direct application to product situations with a growing need for scientific input.
Modern Biopolymer Science matches science to application by first acknowledging the differing viewpoints between those working with low-solids and those working with high-solids, and then sharing the expertise of those two camps under a unified framework of materials science.
* Real-world utilisation of fundamental science to achieve breakthroughs in product development
* Includes a wide range of related aspects of low and high-solids systems for foods and pharmaceuticals
* Covers more than bio-olymer science in foods by including biopolymer interactions with bioactive compounds, issues of importance in drug delivery and medicinal chemistry

Kasapis / Norton / Ubbink Modern Biopolymer Science jetzt bestellen!

Weitere Infos & Material


1;Front cover;1
2;MODERN BIOPOLYMER SCIENCE;4
3;Copyright;5
4;Contents;6
5;Contributors;8
6;Preface;10
7;CHAPTER 1 Biopolymer Network Assembly:Measurement and Theory;12
7.1;1.1 Biopolymer Networks and Gels;12
7.2;1.2 Rheological Characterization of Biopolymer Gels;15
7.3;1.3 Theoretical Aspects;23
7.4;1.4 Conclusions;35
7.5;Acknowledgments;36
7.6;References;36
8;CHAPTER 2Gelation: Principles, Models and Applications to Proteins;40
8.1;2.1Introduction;40
8.2;2.2Modeling gel networks and their rheological behavior;41
8.3;2.3 Molecular mechanisms causing aggregation/gelation;69
8.4;2.4Gel structure type;76
8.5;2.5Gel Texture: oral processing, rheology/fracture, microstructure and sensory ANALYSIS;81
8.6;2.6Concluding remarks and future challenges;89
8.7;Acknowledgments;90
8.8;References;90
9;CHAPTER 3 Antifreeze Proteins:Their Structure,Binding and Use;104
9.1;3.1Antifreeze Proteins;104
9.2;3.2AFP Properties;109
9.3;3.3AFP Mechanism ofnbspFunction;129
9.4;3.4Applications of AFP;132
9.5;References;135
10;CHAPTER 4Biopolymers in Food Emulsions;140
10.1;4.1Introduction;140
10.2;4.2Emulsion Science And Technology Terminology;140
10.3;4.3Emulsion Droplet Characteristics;142
10.4;4.4Production Of Food Emulsions;145
10.5;4.5Emulsion Stability;148
10.6;4.6Physicochemical Properties of Food Emulsions;157
10.7;4.7Biopolymer Emulsifiers;163
10.8;4.8Biopolymer Texture Modifiers;171
10.9;4.9Conclusions;174
10.10;References;174
11;CHAPTER 5Functional Interactions in Gelling Biopolymer Mixtures;178
11.1;5.1Introduction;178
11.2;5.2Applicability of Polymer Blending Laws tonbspBiphasic Networks;181
11.3;5.3Phase Composition;183
11.4;5.4Blending Law Analyses of Gelatin-Calcium Pectinate Co-Gels;185
11.5;5.5Co-Gelation of Whey Protein Isolate (WPI) With Crosslinked Starch;189
11.6;5.6Associative Interactions;193
11.7;5.7Segregative Interactions in Single-Phase Mixtures;200
11.8;5.8Current Understanding and Future Challenges;204
11.9;Acknowledgments;205
11.10;References;205
12;CHAPTER 6Effect of Processing on Biopolymer Interactions;210
12.1;6.1Introduction;210
12.2;6.2Fluid/Sheared Gels;214
12.3;6.3Water-In-Water Emulsions;221
12.4;6.4 Processing Inside People;223
12.5;6.5The Future;231
12.6;Acknowledgments;232
12.7;References;232
13;CHAPTER 7Unified Application of the Materials-Science Approach to the Structural Properties of Biopolymer Co-Gels throughout the Industrially Relevant Level of Solids;236
13.1;7.1Introduction and Overview of Product Development Concerns That Necessitated Work In Phase-Separated Biopolymer Gels;236
13.2;7.2Experimental Methods of Pinpointing Phase-Separation Phenomena in Mixed Gels;238
13.3;7.3 Utilization Of Reaction Kinetics To Identify Phase-Separation Phenomena In Biopolymer Mixtures;246
13.4;7.4Quantitative Analysis Of The Structural Properties Of Binary Composite Gels;248
13.5;7.5Bridging The Divide Between The Low- And High-Solid Analyses In Binary Co-Gels;253
13.6;7.6Molecular Dynamics Of Bioactive Compounds In A High-Solids Carbohydrate Matrix;259
13.7;7.7Structural Properties Of Non-Aqueous Systems Used In Controlled Topical Delivery;262
13.8;7.8 Concluding Remarks;264
13.9;Acknowledgments;265
13.10;References;265
14;CHAPTER 8Mapping the Different States of Food Components Using State Diagrams;272
14.1;8.1 Introduction;272
14.2;8.2 Glass transition;272
14.3;8.3 Glass formation;276
14.4;8.4 Determination of glass transition;277
14.5;8.5 Water plasticization and plasticizers;278
14.6;8.6 Glass transition and water activity;280
14.7;8.7 Mechanical properties and relaxations;280
14.8;8.8 Stiffness;282
14.9;8.9 Collapse phenomena;282
14.10;8.10 Stickiness and caking;282
14.11;8.11 Glass transitions innbspfrozen foods;283
14.12;8.12 Crystallization and recrystallization;284
14.13;8.13 State diagrams and stability;284
14.14;References;286
15;CHAPTER 9Structural Advances in the Understanding of Carbohydrate Glasses;288
15.1;9.1 Carbohydrate Phase Behavior in the Prediction of Food and Pharmaceutical Stability;288
15.2;9.2 Effects of Water on the Structure of Carbohydrate Glasses;290
15.3;9.3 Molecular Packing in Glassy Carbohydrates;292
15.4;9.4 Structural Aspects ofnbspthe Aging of Carbohydrate Glasses;295
15.5;9.5 Dynamic Properties Close to the Glass Transition;296
15.6;9.6 Technological Implications;298
15.7;9.7 Conclusions and Perspectives;303
15.8;Acknowledgments;303
15.9;References;303
16;CHAPTER 10Biopolymer Films and Composite Coatings;306
16.1;10.1 Introduction;306
16.2;10.2 Mechanisms of Film Formation;306
16.3;10.3 Obtaining a Well-Matched Coating;309
16.4;10.4 Film-Application Stages and Methods for Testing Films;310
16.5;10.5 Selecting Biopolymers for Specific Applications;311
16.6;10.6 Edible Protective Films;312
16.7;10.7 Novel Products;325
16.8;10.8 Non-Food Gum Coatings;327
16.9;10.9 Next Generation of Edible Films;327
16.10;References;329
17;CHAPTER 11 Protein + Polysaccharide Coacervates and Complexes: From Scientific Background to their Application as Functional Ingredients in FoodProducts;338
17.1;11.1 Introduction;338
17.2;11.2 Historical Background;339
17.3;11.3 Structures formed during protein + polysaccharide associative phase separation;340
17.4;11.4 Protein + Polysaccharide Associative Phase Separation Kinetics;341
17.5;11.5 Internal structure of coacervates and interpolymeric complexes;345
17.6;11.6 Parameters affectingnbspprotein + polysaccharide attractive electrostatic interaction;350
17.7;11.7 Functional properties and potential applications of protein + polysaccharide complexes and coacervates;354
17.8;11.8 Main limitations for the use of coacervates and complexes in food applications and encapsulation;364
17.9;11.9 Perspectives;366
17.10;Acknowledgments;366
17.11;References;366
18;CHAPTER 12Single Molecule Techniques: Atomic Force Microscopy and Optical Tweezers;376
18.1;12.1 Atomic force microscopy;376
18.2;12.2 Surface forces;397
18.3;12.3 Conclusions;404
18.4;References;404
19;CHAPTER 13Dietary Fiber: Fulfilling the Promise of Added-Value Formulations;410
19.1;13.1 Recent developments in dietary fiber research;410
19.2;13.2 Technological properties of dietary fiber;422
19.3;13.3 Dietary fiber products: Chemistry, functional properties and applications in foods;424
19.4;13.4 Concluding remarks;451
19.5;References;452
20;CHAPTER 14 Resistant Starch in Vitro and in Vivo:Factors Determining Yield, Structure,and Physiological Relevance;460
20.1;14.1 Introduction;460
20.2;14.2 Measurement of resistant starch;461
20.3;14.3 Health benefits of RS;467
20.4;14.4 Effect of processing on resistant starch formation in foods;472
20.5;14.5 Model studies of isolated starches;491
20.6;14.6 Molecular and microstructural organization of resistant starches;495
20.7;14.7 Concluding remarks;507
20.8;References;511
21;CHAPTER 15Glycemic Response Reduction in Processed Food Products;522
21.1;15.1 Introduction;522
21.2;15.2 Processing and carbohydrate digestibility;522
21.3;15.3 The effect of extrusion parameters and processing on foodnbspquality;523
21.4;15.4 Manipulating the glycemic impact of extruded snack products;524
21.5;15.5 The link between slowly digestible and rapidly digestible carbohydrates and the glycemic impact of processed foods;525
21.6;15.6 Use of dietary fiber in manipulating starch digestibility;527
21.7;15.7 Conclusion;528
21.8;References;528
22;CHAPTER 16Biopolymers in ControlledhyphenRelease Delivery Systems;530
22.1;16.1 Introduction;530
22.2;16.2 Drug loading and release;532
22.3;16.3 Modeling diffusion;533
22.4;16.4 Higuchian model;535
22.5;16.5 Swelling;536
22.6;16.6 Temperature-sensitive hydrogels;537
22.7;16.7 Equilibrium swelling and the Flory-Rehner theory;538
22.8;16.8 Approaches to cross-linking;540
22.9;16.9 Glutaraldehyde;540
22.10;16.10 Genipin;541
22.11;16.11 Quinones and phenols;542
22.12;16.12 Polyelectrolyte crosshyphenlinking and complexes;543
22.13;16.13 Polymer-drug interactions;544
22.14;16.14 Collagen;545
22.15;16.15 Gelatin;547
22.16;16.16 Chitin and chitosan;551
22.17;16.17 Celluloses;553
22.18;16.18 Alginates;555
22.19;Summary;558
22.20;Acknowledgments;559
22.21;References;559
23;CHAPTER 17Amyloid Fibrils - Self-Assembling Proteins;570
23.1;17.1 Introduction to protein misfolding and fibril formation;570
23.2;17.2 Amyloid formation, nature and disease;571
23.3;17.3 Why is there such a great interest in amyloid fibrils?;572
23.4;17.4 Amyloid fibrils innbspnature;574
23.5;17.5 Protein folding and misfolding in the cell;575
23.6;17.6 Amyloid formation and biotechnology;575
23.7;17.7 Fibril formation pathways;576
23.8;17.8 Analytical techniques to study amyloid formation;577
23.9;17.9 Techniques for studying amyloid fibril formation;579
23.10;17.10 Detection of amyloid fibrils;585
23.11;17.11 Alternative models to the cross beta structure;590
23.12;17.12 Fibril formation kinetics;590
23.13;17.13 Conditions that promote fibril formation;590
23.14;17.14 Taking lessons from nature;595
23.15;17.15 Nanotubes and nanowires;596
23.16;17.16 Fibrillar gels;597
23.17;17.17 Future innovations?;599
23.18;17.18 Conclusions;599
23.19;References;600
24;CHAPTER 18Hydrocolloids and Medicinal Chemistry Applications;606
24.1;18.1 Drug delivery;606
24.2;18.2 Tissue engineering;615
24.3;18.3 Future horizons;625
24.4;Acknowledgments;625
24.5;References;625
25;Index;630



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.