Kipp / Radlanski | Neuroanatomie | E-Book | sack.de
E-Book

E-Book, Deutsch, 504 Seiten

Kipp / Radlanski Neuroanatomie

Nachschlagen | Lernen | Verstehen

E-Book, Deutsch, 504 Seiten

ISBN: 978-3-86867-520-7
Verlag: KVM
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Die Neuroanatomie erklärt anschaulich die wichtigsten und prüfungsrelevanten funktionellen und anatomischen Zusammenhänge des Zentralen Nervensystems. Das Buch eignet sich daher ideal zum Nachschlagen, Lernen und Verstehen in jeder Lernphase: für die Kurs- und Semesterbegleitung, fürs nächste Testat, zur effektiven Vorbereitung auf die Semesterklausur oder das Physikum. Hinzu kommt als neues Konzept die didaktische Verzahnung von schematischen Grafiken und detaillierten Fotografien von Gehirn- und Rückenmarkspräparaten. Damit werden Theorie und Praxis präzise und anschaulich miteinander verbunden und die Lerneffekte intensiviert.

Die inhaltliche Gliederung sorgt für Struktur und prompten Zugriff auf den Lernstoff:

• Zunächst werden die Grundlagen der Neuroanatomie vorgestellt.
• Die einzelnen Bestandteile und Strukturen des Zentralen Nervensystems werden anschließend im Hauptteil erklärt.
• Es folgt eine Betrachtung ihrer Zusammenhänge und ihres ineinandergreifenden Zusammenspiels.
• Ein eigenes Kapitel ist den bildgebenden Verfahren und ihrer Anwendung in der Neuroanatomie gewidmet.

Das Buch ist abwechslungsreich und didaktisch zielführend konzipiert:

Ein übersichtliches, farbkodiertes Layout und durchdacht angeordnete Legenden ermöglichen einen raschen Überblick über den Lernstoff. Die komplexen Zusammenhänge der Neuroanatomie lassen sich mit diesem Konzept daher von Grund auf leicht verständlich erschließen und einprägen.
Darüber hinaus enthält das Buch praktische Merkboxen und Hervorhebungen für spannende klinische, pharmakologische und wissenschaftliche Themen. Am Ende eines jeden Kapitels wird noch einmal gesondert auf die wichtigsten IMPP-relevanten Besonderheiten eingegangen. So kann das Gelernte auch immer an den MC-Fragen direkt getestet werden.
Kipp / Radlanski Neuroanatomie jetzt bestellen!

Weitere Infos & Material


1 Aufbau des Gehirns – Einführung in die Neurohistologie

2 Allgemeiner Aufbau des Nervensystems (unter Mitarbeit von C. Beyer)

3 Rückenmark und Spinalnerven

4 Hirnhäute und Liquorräume des Zentralnervensystems (unter Mitarbeit von T. Clarner)

5 Schädelbasis und Hirnnerven

6 Subkortikale Strukturen und Diencephalon

7 Hirnstamm

8 Cerebellum

9 Telencephalon

10 Blutversorgung des Gehirns

11 Motorik

12 Sensibilität

13 Gleichgewicht, Sehen und Hören

14 Bildgebende Verfahren (unter Mitarbeit von O. Nikoubashman)

15 Anhang


Kapitel 1 Aufbau des Gehirns – Einführung in die Neurohistologie Nervenzellen (Neurone) Der neuronale Zellkörper und das Zytoskelett Das Axon und die Synapse Axonaler Transport Dendriten von Nervenzellen Gliazellen Astrozyten Oligodendrozyten und Schwann-Zellen Saltatorische Erregungsleitung Mikrogliazellen Ependymzellen Zusammenfassung Was das IMPP wissen möchte Index Weiterführende Literatur Vorbemerkung Das Nervensystem ist kompliziert und faszinierend zugleich. In keinem anderen wissenschaftlichen Feld konnten im letzten Jahrzehnt größere Fortschritte verzeichnet werden als in den Neurowissenschaften. Dieses Lehrbuch stellt sich der Herausforderung, ein komplexes Gebiet der Anatomie einerseits so zu erklären, dass Funktionsweisen und Zusammenhänge begriffen werden können, andererseits soll aber auch der Tatsache Rechnung getragen werden, dass die Neuroanatomie nur einen gewissen Prozentsatz der prüfungsrelevanten Fragen ausmacht. Bei der Konzeption dieses Lehrbuches haben wir uns deswegen am Gegenstandskatalog des IMPP orientiert. Zum Abschluss jedes Kapitels wird noch einmal gesondert auf „Spezialitäten“ des IMPP-Wissens eingegangen („Was das IMPP wissen möchte“). Im ersten Kapitel werden wir eine Einführung in das Organisationsprinzip des Nervensystems geben. Hierbei beginnen wir mit der Histologie, da zelluläre Komponenten des Nervensystems den Baustoff für unser Gehirn liefern. Diesem histologischen Teil schließt sich ein grober Überblick über den Aufbau und die Funktionsweise des Nervensystems an. Ziel dieser einleitenden Kapitel ist es, eine Grundlage für weiterführende Betrachtungen des Nervensystems zu legen. Hier lernen Sie die wichtigsten Vokabeln und Begriffe, sowie wichtige Grundprinzipien, die immer wieder in der Neuroanatomie vorkommen werden. Sicher sind Sie nach den ersten beiden Kapiteln noch nicht in der Lage, in der „Bundesliga“ der Neuroanatomen mitzuspielen. Es reicht aber zumindest für die Kreisklasse, Sie lernen zu dribbeln, Sie lernen auf das Tor zu schießen. In den folgenden Kapiteln gehen wir detaillierter auf die verschiedenen Abschnitte des Nervensystems ein. Dort lernen Sie dann, einen Gegner auszutricksen und den Ball am Torwart vorbei in die Ecke zu schießen. Zum Abschluss betrachten wir das Nervensystem unter funktionellen Gesichtspunkten. Dort werden Sie lernen wie Sehen, Hören, Gleichgewicht, Bewegung und Sensibilität funktioniert und welche verschiedenen Elemente des Nervensystems daran beteiligt sind. Lernziele Sie sollten nach Durcharbeitung der beiden einführenden Kapitel 1 und 2 in der Lage sein: •Den Aufbau einer Nervenzelle zu erklären. •Elemente des neuronalen Zytoskelettes zu benennen und zu erklären. •Verschiedene Typen von Nervenzellen zu benennen. •Das Prinzip der Verschaltung via Synapsen zu erklären. •Mechanismen des axonalen Transports zu erklären. •Gliazellen zu benennen und deren unterschiedliche Funktionen zu erklären. •Die Unterschiede zwischen grauer und weißer Substanz, peripherem und zentralen Nervensystem, somatischem und vegetativem Nervensystem sowie zwischen Afferenzen und Efferenzen zu kennen. •Apikale, medio-sagittale, laterale und basale Ansichten des Gehirns zu erkennen und zu benennen. Aufbau des Gehirns – Einführung in die Neurohistologie Die Zellen des Nervensystems lassen sich in Nervenzellen (Neurone) und Gliazellen unterteilen. Wenngleich auch die Anzahl der Neurone des menschlichen Gehirns unsere Vorstellungskraft übersteigt (etwa 100 Milliarden), die Anzahl der Gliazellen übertrifft die der Neuronen noch um ein Vielfaches. Neurone sind für die Signalübermittlung innerhalb des Nervensystems verantwortlich, indem sie Aktionspotenziale generieren und weiterleiten (siehe entsprechende Lehrbücher der Physiologie). Im Prinzip handelt es sich bei Aktionspotenzialen um elektrische Impulse. Nervenzellen kommunizieren also über elektrische Impulse. Dabei wird eine bestimmte Funktion in der Regel von einer Kette hintereinander geschalteter Nervenzellen erfüllt. Den Ort, an dem Nervenzellen miteinander kommunizieren, nennt man Synapse. Neben den Neuronen besteht das Nervensystem noch aus Gliazellen. Diese tragen zur Gehirnfunktion vor allem dadurch bei, dass sie benachbarte Neurone isolieren, stützen und ernähren. Um die Struktur von Nervenzellen zu untersuchen, mussten Wissenschaftler etliche Hindernisse überwinden. Das erste Hindernis war die geringe neuronale Größe. Die meisten Nervenzellen haben einen Durchmesser vom Bruchteil eines Millimeters. Zum Vergleich: Die Spitze eines ungespitzten Bleistifts misst etwa 2 mm, Nervenzellen sind 40- bis 200-mal kleiner. Diese Größe liegt deutlich unterhalb der Grenze dessen, was mit bloßem Auge noch erkennbar wäre. Deshalb waren vor Entwicklung des zusammengesetzten Mikroskops im späten 17. Jahrhundert Fortschritte in der Neurowissenschaft nur bedingt möglich. Die Erfindung des Mikroskops eröffnete das Gebiet der Histologie, der mikroskopischen Untersuchung von Gewebestrukturen. Wissenschaftler, die das Gehirn untersuchen wollten, waren jedoch noch mit einem weiteren Hindernis konfrontiert: Frisch präpariertes Gehirn sieht unter dem Mikroskop mehr oder weniger einheitlich cremefarben aus. Das Gewebe zeigt keine deutlichen Unterschiede in der Pigmentierung, die es den Histologen ermöglichen würden, einzelne Zellen voneinander abzugrenzen. Der endgültige Durchbruch auf dem Gebiet der Neurohistologie war deswegen die Einführung von speziellen Färbemethoden, mit denen sich einzelne Zellteile im Hirngewebe darstellen ließen. Eine dieser Färbemethoden, die auch heute noch Anwendung findet, wurde vom deutschen Neurologen Franz Nissl Ende des 19. Jahrhunderts entwickelt. Nissl zeigte, dass basische Farbstoffe einer bestimmten Klasse die Zellkerne aller Zellen sowie Materialansammlungen um die Zellkerne von Neuronen herum anfärben. Diese Ansammlungen bezeichnet man als Nissl-Schollen, die Methode als die Nissl-Färbung. Mit dieser Färbung lassen sich zum einen Neurone und Gliazellen voneinander unterscheiden, zum anderen können erfahrene Neurohistologen so die Anordnung oder Zytoarchitektur von Nervenzellen in verschiedenen Teilen des Gehirns feststellen. Diese Untersuchungen führten zu der Erkenntnis, dass das Gehirn aus vielen spezialisierten Regionen besteht. Wir wissen heute, dass jede Region eine eigene Funktion hat, die wir im Rahmen dieses Lehrbuches allesamt kennenlernen und verstehen werden. Nervenzellen (Neurone) Neurone bestehen aus mindestens zwei unterscheidbaren Teilen: einem Zellkörper, der den Zellkern enthält, und zahlreichen dünnen Fortsätzen, die vom Zellkörper abgehen (Abb. 1.1). Abb. 1.1 Eine Nervenzelle besteht auseinem Nervenzellkörper (Soma/ Perikaryon) mit zwei Arten von Fortsätzen (Neuriten): Dendriten, welche die Information aufnehmen und Axone, welche die Information an die nächste Zelle weiterleiten. Ein ankommendes Aktionspotenzial wird an den Dornfortsätzen von einer Nervenzelle registriert. Am Axonhügel, der frei von rauem endoplasmatischen Retikulum (rER) ist, entsteht bei Überschreitung eines Schwellenwertes ein neues Aktionspotenzial. Dieses wird rasch über das myelinisierte Axon an die nächste Zelle weitergeleitet. Viele Axone sind von einer Myelinscheide umgeben; diese isoliert das Axon und beschleunigt somit die Fortleitung des Aktionspotenzials (saltatorische Erregungsleitung). An den Ranvier-Schnürringen ist die Myelinscheide regelmäßig unterbrochen. Dieser Bereich wird als Nodus bezeichnet, der Abschnitt zwischen zwei Ranvier-Schnürringen als Internodium. Zur besseren Orientierung ist die Flussrichtung des Aktionspotenzials als Pfeil illustriert. An den Axonterminalen (synaptische Endköpfchen; Boutons) wird das Aktionspotenzial an die nächste Nervenzelle übergeben. Für den Zellkörper gibt es zwei verschiedene Bezeichnungen, die gleichbedeutend verwendet werden können: Soma (Plural: Somata) und Perikaryon (Plural: Perikarya). Perikaryon bedeutet so viel wie „Bereich um den Zellkern“ (griech. pe?? – „um, herum“ sowie ?????? – „Kern“). Die Fortsätze, die vom Soma ausgehen, bezeichnet man als Dendriten und Axone, die oft unter dem Oberbegriff „Neuriten“ zusammengefasst werden. Wie bereits erwähnt, kommunizieren Neurone untereinander durch elektrische Impulse, durch Aktionspotenziale. Dendriten nehmen die Aktionspotenziale auf, Axone leiten sie weiter. Der Fluss eines Aktionspotenzials, bezogen auf die Fortsätze der Nervenzelle, verläuft also von Dendrit über das Perikaryon zum Axon. Eine Nervenzelle kann mehrere Dendriten, aber nur ein Axon haben. Das Axon besitzt auf seiner gesamten Länge einen einheitlichen Durchmesser und verzweigt sich an seinem Ende in mehrere Fortsätze, die Telodendra (Telodendron in der Einzahl) genannt werden. Diese enden in einer Vielzahl von Endknöpfchen (auch als Axonterminale, Synapsenendköpfchen oder Boutons bezeichnet), die den präsynaptischen Teil der Synapse bilden (Abb. 1.2). Abb. 1.2 Übersicht über die synaptischen Strukturen. Das Axon einer...


Markus Kipp studierte von 1999 bis 2006 Humanmedizin an der Universität Tübingen und an der RWTH Aachen. 2010 habilitierte er sich in Aachen für das Fach Anatomie. Es folgte ein zweijähriger Forschungsaufenthalt in Amsterdam/Niederlande und eine Professur für Zelluläre Neurodegeneration an der RWTH Aachen. Seit 2015 ist er Professor für Neuroanatomie und mikroskopische Anatomie an der Universität München. Sein Forschungsinteresse liegt im Bereich demyelinisierender Erkrankungen, vor allem der Multiplen Sklerose. Seit 2006 unterrichtet Markus Kipp Studierende der Human- und Zahnmedizin in Aachen und München.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.