Lange | Optimization | E-Book | sack.de
E-Book

E-Book, Englisch, 255 Seiten, eBook

Reihe: Springer Texts in Statistics

Lange Optimization


Erscheinungsjahr 2013
ISBN: 978-1-4757-4182-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 255 Seiten, eBook

Reihe: Springer Texts in Statistics

ISBN: 978-1-4757-4182-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students’ skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on convexity serves as bridge between linear and nonlinear programming and makes it possible to give a modern exposition of linear programming based on the interior point method rather than the simplex method.

The emphasis on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes graduate students in applied mathematics, computational biology, computer science, economics, and physics as well as upper division undergraduate majors in mathematics who want to see rigorous mathematics combined with real applications.

Chapter 1 reviews classical methods for the exact solution of optimization problems. Chapters 2 and 3 summarize relevant concepts from mathematical analysis. Chapter 4 presents the Karush-Kuhn-Tucker conditions for optimal points in constrained nonlinear programming. Chapter 5 discusses convexity and its implications in optimization. Chapters 6 and 7 introduce the MM and the EM algorithms widely used in statistics. Chapters 8 and 9 discuss Newton’s method and its offshoots, quasi-Newton algorithms and the method of conjugate gradients. Chapter 10 summarizes convergence results, and Chapter 11 briefly surveys convex programming, duality, and Dykstra’s algorithm.

From the reviews:

"...An excellent, imaginative, and authoritative text on the difficult topic of modeling the problems of multivariate outcomes with different scaling levels, different units of analysis, and differentstudy designs simultaneously."

"...As a textbook, Optimization does provide a valuable introduction to an important branch of applicable mathematics."

"...I found to be an extremely engaging textbook....the text is ideal for graduate students or researchers beginning research on optimization problems in statistics. There is little doubt that someone who worked through the text as part of a reading course or specialized graduate seminar would benefit greatly from the author's perspective..."

Lange Optimization jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Elementary Optimization.- 2 The Seven C’s of Analysis.- 3 Differentiation.- 4 Karush-Kuhn-Tucker Theory.- 5 Convexity.- 6 The MM Algorithm.- 7 The EM Algorithm.- 8 Newton’s Method.- 9 Conjugate Gradient and Quasi-Newton.- 10 Analysis of Convergence.- 11 Convex Programming.- Appendix: The Normal Distribution.- A.1 Univariate Normal Random Variables.- A.2 Multivariate Normal Random Vectors.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.