Lunc / Contensou / Duboshin | Propulsion Re-Entry Physics | E-Book | www.sack.de
E-Book

E-Book, Englisch, 592 Seiten, Web PDF

Lunc / Contensou / Duboshin Propulsion Re-Entry Physics

Proceedings
1. Auflage 2014
ISBN: 978-1-4831-8432-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings

E-Book, Englisch, 592 Seiten, Web PDF

ISBN: 978-1-4831-8432-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Propulsion Re-Entry Physics deals with the physics of propulsion re-entry and covers topics ranging from inductive magnetoplasmadynamic (MPD) propulsion systems to launch systems and orbiting maneuvering systems. Problems of re-entry aerodynamics are considered, along with interaction problems in hypersonic fluid dynamics. Comprised of 31 chapters, this volume begins with a detailed account of the quasi-steady adiabatic vaporization and subsequent exothermic decomposition of a pure monopropellant spherical droplet in the absence of free and forced convection. The discussion then turns to results of calculations on MPD machines working in the intermittent and in the continuous mode; inductive plasma accelerators with electromagnetic standing waves; and spherical rocket motors for space and upper stage propulsion. Subsequent chapters focus on pulsed plasma satellite control systems; drag and stability of various Mars entry configurations; hypersonic laminar boundary layers around slender bodies; and effects of an entry probe gas envelope on experiments concerning planetary atmospheres. This book will appeal to students, practitioners, and research workers interested in propulsion re-entry and the accompanying physics.

Lunc / Contensou / Duboshin Propulsion Re-Entry Physics jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Propulsion Re-Entry Physics;4
3;Copyright Page;5
4;Table of Contents;8
5;CONTRIBUTORS;6
6;PART 1: PROPULSION;10
6.1;Section 1. Fumdamental Aspects;12
6.1.1;CHAPTER 1. QUASI-STEADY SPHERICOSYMMETRIC MONOPROPELLANT DECOMPOSITION
IN INERT AND REACTIVE ENVIRONMENTS;12
6.1.1.1;Abstract;12
6.1.1.2;Nomenclature;12
6.1.1.3;1. Introduction;14
6.1.1.4;2. Governing Equations;16
6.1.1.5;3. Monopropellant Decomposition in an Inert Environment;18
6.1.1.6;4. Nearly Frozen Monopropellant Decomposition
in a Reactive Environment;24
6.1.1.7;5. Near-Equilibrium Monopropeliant Decomposition in a Reactive
Environment;27
6.1.1.8;6. Concluding Remarks;32
6.1.1.9;Appendix A.
Experimental;32
6.1.1.10;References;35
6.1.2;CHAPTER 2. ON SOME NEW ASPECTS CONCERNING INDUCTIVE MAGNETOPLASMADYNAMIC (MPD)
PROPULSION SYSTEMS;38
6.1.2.1;Abstract;38
6.1.2.2;1. Introduction;38
6.1.2.3;2. Unsteady Inductive Plasma Propulsion Systems;38
6.1.2.4;3. Continuously Working Inductive Generators and Accelerators;44
6.1.2.5;References;50
6.1.3;CHAPTER 3. INVESTIGATION OF LIQUID PROPELLANTS IN HIGH PRESSURE AND HIGH
TEMPERATURE GASEOUS ENVIRONMENTS;52
6.1.3.1;Abstract;52
6.1.3.2;Nomenclature;52
6.1.3.3;Introduction;53
6.1.3.4;Description of the Experimental Apparatus and Techniques;56
6.1.3.5;Experimental results;59
6.1.3.6;Summary and Recommendations;66
6.1.3.7;References;66
6.1.4;CHAPTER 4. APPLICATION OF THE GALERKI N METHOD IN THE SOLUTION OF COMBUSTION-INSTABILITY
PROBLEMS;68
6.1.4.1;Abstract;68
6.1.4.2;Introduction;68
6.1.4.3;Development of the Modified Galerkin Method;69
6.1.4.4;Application to a Linear Combustion Instability Problem;75
6.1.4.5;References;81
6.1.5;CHAPTER 5. THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON INDUCTIVE PLASMA ACCELERATORS WITH ELECTROMAGNETIC
STANDING WAVES;84
6.1.5.1;Abstract;84
6.1.5.2;1. Introduction;84
6.1.5.3;2. Accelerators Using Electromagnetic Waves;85
6.1.5.4;3. Comparison Between Conventional Electric and Plasma Engines;85
6.1.5.5;4. Theory of the MHD-Engine with Standing
Electromagnetic Waves;86
6.1.5.6;5. Numerical Calculations;93
6.1.5.7;6. Experimental Device;94
6.1.5.8;7. Experiments;95
6.1.5.9;8. Technical Design Studies;104
6.1.5.10;9. Summary and Future Aspects;106
6.1.5.11;Reference;107
6.2;Section II: Launch Systems;110
6.2.1;CHAPTER 6. AN APPARENT ADAPTIVE NOTCH FILTERFOR THRUST VECTOR CONTROL;110
6.2.1.1;Abstract;110
6.2.1.2;Introduction;110
6.2.1.3;Electric Network Analogue;114
6.2.1.4;Conclusion;115
6.2.1.5;References;116
6.2.2;CHAPTER 7. AN ADVANCED LAUNCH SYSTEM USING 156-INCH
SOLID ROCKET MOTORS;120
6.2.2.1;Abstract;120
6.2.2.2;1. Introduction;120
6.2.2.3;2. Configuration Summary;122
6.2.2.4;3. SRM Optimization;124
6.2.2.5;4. Vehicle Description;126
6.2.2.6;5. Vehicle Performance;135
6.2.2.7;6. Resources Analyses;137
6.2.2.8;7. Summary and Conclusions;139
6.2.2.9;References;141
6.2.3;CHAPTER 8. DYNAMIC BEHAVIOR OF LIQUID PROPELLANT IN THE TANKS OF THE THIRD STAGE OF THE EUROPEAN
ELDO-A-ROCKET;142
6.2.3.1;Abstract;142
6.2.3.2;1. Introduction;142
6.2.3.3;2. The Tank without Baffles;144
6.2.3.4;3. Containers with Damping
Rings;157
6.2.3.5;References;161
6.2.4;CHAPTER 9. THE MORPHOLOGICAL CONTINUUM
IN SOLID-PROPELLANT GRAIN DESIGN;166
6.2.4.1;Abstract;166
6.2.4.2;Preface: Functional Characteristics in Grain Design;166
6.2.4.3;Introduction;168
6.2.4.4;Evolution of Nomenclature and Concept in Grain Design;173
6.2.4.5;Summary and the state of optimization, 1960-1965;183
6.2.4.6;Conclusion—Points of Evolution and Resultant Principles;188
6.2.4.7;Summary;190
6.2.4.8;References;191
6.2.4.9;Glossary of Solid Propellant Grain Design;196
6.2.5;CHAPTER 10. MISE AU POINT DU MOTEUR VALOIS EQUIPANT LE PREMIER ETAGE DU LANCEUR «
DIAMANT B »;206
6.2.5.1;Résumé;206
6.2.5.2;1. Introduction;206
6.2.5.3;2. Caractéristiques principales et spécifications du système de propulsion;207
6.2.5.4;3. Description et fonctionnement du moteur;208
6.2.5.5;4. La mise au point du moteur;210
6.2.5.6;5. Conclusion;213
6.2.5.7;References;213
6.3;Section III: Orbiting Maneuvering Systems;214
6.3.1;CHAPTER 11. SPHERICAL ROCKET MOTORS FOR SPACE
AND UPPER STAGE PROPULSION;214
6.3.1.1;Abstract;214
6.3.1.2;1. Introduction;214
6.3.1.3;2. Motor Performance Prediction;215
6.3.1.4;3. Motor Weight Prediction;220
6.3.1.5;4. Performance and Weight Prediction Program;224
6.3.1.6;5. Total Impulse Reproducibility;225
6.3.1.7;6. Flight Reliability;230
6.3.1.8;7. Future Trends and Applications;230
6.3.1.9;References;232
6.3.2;CHAPTER 12. POSITION AND ORIENTATION PROPULSION
SYSTEMS FOR UNMANNED VEHICLES;234
6.3.2.1;Abstract;234
6.3.2.2;Introduction;234
6.3.2.3;Available Mass Expulsion Techniques;235
6.3.2.4;Three-axis stabilized systems without inertial wheels;241
6.3.2.5;Conclusions;242
6.3.3;CHAPTER 13. A SUBLIMING SOLID REACTION
CONTROL SYSTEM;248
6.3.3.1;Abstract;248
6.3.3.2;Introduction;248
6.3.3.3;Design Description;249
6.3.3.4;Thrust Measurement;256
6.3.3.5;Performance Characteristics;259
6.3.3.6;Conclusions;260
6.3.3.7;References;260
6.3.4;CHAPTER 14. PULSED PLASMA SATELLITE
CONTROL SYSTEMS;264
6.3.4.1;Abstract;264
6.3.4.2;Introduction;264
6.3.4.3;Pulsed Plasma Thrustor Characteristics;265
6.3.4.4;Thrustor Systems;268
6.3.4.5;Conclusions;275
6.3.4.6;References;276
6.3.5;CHAPTER 15. CONCEPTION ET DEVELOPPEMENT D'UN MOTEUR
D'APOGEE DANS LE CONTEXTE EUROPEEN;280
6.3.5.1;Abstract;280
6.3.5.2;1. Introduction;280
6.3.5.3;2. Caractéristiques générales du moteur;281
6.3.5.4;3. Analyse des facteurs dont dépendent les qualités du moteur;283
6.3.5.5;4. Niveau de fiabilité;287
6.3.5.6;Conclusion;288
6.3.6;CHAPTER 16. ELECTRIC PROPULSION FOR ORBITAL TRANSFER;290
6.3.6.1;1. Introduction;290
6.3.6.2;2. Survey of Engine Types;290
6.3.6.3;3. Overall Transfer Stage System Parameters;294
6.3.6.4;4. Orbit Transfer Possibilities;296
6.3.6.5;5. Discussion of Spacecraft Parameters;299
6.3.6.6;6. Conclusions;304
6.3.6.7;References;304
7;PART II: RE-ENTRY PHYSICS;306
7.1;Section IV: New Problems of Re-entry Aerodynamics;308
7.1.1;CHAPTER 17. RADIATIN G FLOWS DURIN G ENTRY
INTO PLANETARY ATMOSPHERES;308
7.1.1.1;1. Introduction;308
7.1.1.2;2. Emissive Properties of Planetary Gases;308
7.1.1.3;3. Radiating Shock Layer Flows;317
7.1.1.4;4. Nonequilibrium Radiative Flows;333
7.1.1.5;References;341
7.1.2;CHAPTER 18. A3P0£HHAMH^ECK0E ÇÁÃÑÅÂÁÇÇÅHECymHX TEJT;350
7.1.2.1;JÏHTepaTypa;359
7.1.3;19. AERODYNAMIC HEATING OF LIFTING BODIES;360
7.1.3.1;Summary;360
7.1.4;CHAPTER 20. DRAG AND STABILITY OF
VARIOUS MARS ENTRY CONFIGURATIONS;364
7.1.4.1;Abstract;364
7.1.4.2;Nomenclature;364
7.1.4.3;Introduction;365
7.1.4.4;Test Facilities;367
7.1.4.5;Data Reduction;367
7.1.4.6;Discussion of Results;371
7.1.4.7;Conclusions;386
7.1.4.8;References;386
7.1.5;CHAPTER 21. ÉTUDE EXPÉRIMENTALE DU PROCHE SILLAGE DE CORPS DE RÉVOLUTION
EN ÉCOULEMENT SUPERSONIQUE;388
7.1.5.1;Résumé;388
7.1.5.2;Summary;388
7.1.5.3;Notations;388
7.1.5.4;I. Introduction;389
7.1.5.5;2. Analyse des conditions de formation d'un sillage turbulent;390
7.1.5.6;3. Etude expérimentale du proche sillage laminaire;405
7.1.5.7;4. Conclusions;409
7.1.5.8;Références;410
7.1.6;CHAPTER 22. THE CALCULATION OF BASE FLOW AND NEAR WAKE PROPERTIES BY
THE METHOD OF INTEGRAL RELATIONS;412
7.1.6.1;Abstract;412
7.1.6.2;1. Introduction;412
7.1.6.3;2. Equations of Motion;413
7.1.6.4;3. Reduction of Equations of the Critical Points;418
7.1.6.5;4. Behavior of the Wake Equations Near a Critical Point;419
7.1.6.6;5. Applications and Results;421
7.1.6.7;References;424
7.1.7;CHAPTER 23. SUPERSONIC FLOW PAST BLUNT BODIES
WITH LARGE SURFACE INJECTION;426
7.1.7.1;Abstract;426
7.1.7.2;Introduction;426
7.1.7.3;Mathematical Model;428
7.1.7.4;Discussion of Results;430
7.1.7.5;Conclusions;437
7.1.7.6;References;437
7.2;Section V:
Interaction Problems in Hypersonic Fluid Dynamics;440
7.2.1;CHAPTER 24. OBTEKAHHE 3ATyiUIEHffl>IX TEJI ÃÇÐÅÑ3ÂÕÊ0ÂÂÉÌ ÐÏÔÏÊÏÌ ÃÁ3Á
C y^ETOM ÐÅÑÅÇÏÏÁ H3JIY*IEHIflI;440
7.2.1.1;BseaeHHe;440
7.2.1.2;1. Teiemie H3rty*iaiomero ra3a B oicpecTHOCTH KpirriraecKott JIHHHH;442
7.2.1.3;2. PacieT Te^eHHÜ
H3Jiy*iaiomero ra3a B 3one BJIHHHHH 3aTynneHHH;449
7.2.1.4;3. OÔlIJHe BBIBOAbl;465
7.2.1.5;JlHTepaTypa;465
7.2.2;CHAPTER 25. TEJIA BPAIIJEHHH C MHHHMAJIBHBIMÊ03ÖÖÇÉ^ÇÅÇÔ0 Ì JIOEOBOIO COnPOTHBJIEHHHH MAJIOH ÔÅÐûÏÐÅÑÅ^Á^Åß úÐÑÇ EOJIBIHHX ÏÂÅÑ×3ÂÕÊÏÂÂÉ×CKOPOCT^X nOJIETA;468
7.2.2.1;1. TeJIO Bpail^eHHH C MHHHMaJIbHbIM ÊÏ3ööÇ0(Ç6ÇÔÏÌCOnpOTHBJieHHH HpH rHIiep3ByKOBbIX CKOpOCTHX;468
7.2.2.2;2· Tenjionepeaaia ê TejiaM BpaiijeHHH CTeneHHoii öïñÌÌB rHnep3syKOBOM noTOKe ra3a;473
7.2.2.3;3. 3KcnepHMeHTajiBHoe HCCJie^oBaHue êïÈööêð,ÇâÇôï noöoBoroconpoTHBJieHHH H Temionepefla^H onTHMajibHbix Ten spaujeHHHÐñÇ CBepX3ByKOBWX CKOpOCTHX;477
7.2.2.4;JlHTepaTypa;480
7.2.3;CHAPTER 26. BODIES OF REVOLUTION WITH MINIMUM DRAG COEFFICIENT AND LOW HEAT TRANSFER RATE
AT HYPERSONIC SPEEDS;481
7.2.3.1;Summary;481
7.2.4;CHAPTER 27. AXISYMMETRI C VISCOUS INTERACTION WITH SMALL VELOCITY SLIP AND TRANSVERSE CURVATURE-EFFECTS OF PRANDTL NUMBER AND RATIO OF SPECIFIC
HEATS;484
7.2.4.1;Abstract;484
7.2.4.2;Nomenclature;484
7.2.4.3;Introduction;486
7.2.4.4;Theory;486
7.2.4.5;Numerical Integration;496
7.2.4.6;Results;496
7.2.4.7;Comparison with existing analytical and experimental results;509
7.2.4.8;References;515
7.2.5;CHAPTER 28. HYPERSONIC LAMINA R BOUNDARY LAYERS
AROUND SLENDER BODIES;516
7.2.5.1;Abstract;516
7.2.5.2;Nomenclature;516
7.2.5.3;1. Introduction;518
7.2.5.4;2. Formulation of the Problem;520
7.2.5.5;3. Solution of Boundary Layer Equations;527
7.2.5.6;4. Numerical Solutions for a Flat Plate;534
7.2.5.7;5. Results and Conclusions;539
7.2.5.8;6. Remarks;546
7.2.5.9;References;547
7.2.6;CHAPTER 29. KINETIC THEORY OF THE SHARP LEADING EDGE
PROBLEM II. HYPERSONIC FLOW;550
7.2.6.1;Abstract;550
7.2.6.2;1. Introduction;550
7.2.6.3;2. Summary of Mathematical Formulation;552
7.2.6.4;3. The Modified Computational Procedure;555
7.2.6.5;4. Results and Comparisons with Experimental Data;556
7.2.6.6;5. Discussion and Concluding Remarks;572
7.2.6.7;References;573
7.2.7;CHAPTER 30. a-EFFECTS ARE NEGLIGIBL EIN HYPERSONIC UNSTEADY AERODYNAMICS -FACT
OR FICTION;576
7.2.7.1;Abstract;576
7.2.7.2;Nomenclature;576
7.2.7.3;1. Introduction;577
7.2.7.4;2. Analysis;578
7.2.7.5;3. Discussion;582
7.2.7.6;4. Conclusions;589
7.2.7.7;References;589
7.2.8;CHAPTER 31. EFFECTS OF AN ENTRY PROBE GAS ENVELOPE ON EXPERIMENTS CONCERNING
PLANETARY ATMOSPHERES;592
7.2.8.1;Abstract;592
7.2.8.2;1. Introduction;592
7.2.8.3;2. General principles of Evaluation of Gas Envelope Effects;593
7.2.8.4;3. Solar X-Ray and UV Insolation by the Martian Atmosphere;594
7.2.8.5;4. Absorption of Solar Radiation by Gas Envelope Species;597
7.2.8.6;5. Emissions from Gas Envelope Species;605
7.2.8.7;6. Conclusions;611
7.2.8.8;References;612



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.