Mallick / Gold / Baladandayuthapani | Bayesian Analysis of Gene Expression Data | E-Book | sack.de
E-Book

E-Book, Englisch, 252 Seiten, E-Book

Reihe: Statistics in Practice

Mallick / Gold / Baladandayuthapani Bayesian Analysis of Gene Expression Data


1. Auflage 2009
ISBN: 978-0-470-74281-5
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 252 Seiten, E-Book

Reihe: Statistics in Practice

ISBN: 978-0-470-74281-5
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The field of high-throughput genetic experimentation is evolvingrapidly, with the advent of new technologies and new venues fordata mining. Bayesian methods play a role central to the future ofdata and knowledge integration in the field of Bioinformatics. Thisbook is devoted exclusively to Bayesian methods of analysis forapplications to high-throughput gene expression data, exploring therelevant methods that are changing Bioinformatics. Case studies,illustrating Bayesian analyses of public gene expression data,provide the backdrop for students to develop analytical skills,while the more experienced readers will find the review of advancedmethods challenging and attainable.
This book:
* Introduces the fundamentals in Bayesian methods of analysis forapplications to high-throughput gene expression data.
* Provides an extensive review of Bayesian analysis and advancedtopics for Bioinformatics, including examples that extensivelydetail the necessary applications.
* Accompanied by website featuring datasets, exercises andsolutions.
Bayesian Analysis of Gene Expression Data offers a uniqueintroduction to both Bayesian analysis and gene expression, aimedat graduate students in Statistics, Biomedical Engineers, ComputerScientists, Biostatisticians, Statistical Geneticists,Computational Biologists, applied Mathematicians and Medicalconsultants working in genomics. Bioinformatics researchers frommany fields will find much value in this book.

Mallick / Gold / Baladandayuthapani Bayesian Analysis of Gene Expression Data jetzt bestellen!

Weitere Infos & Material


Table of Notation.
1 Bioinformatics and Gene Expression Experiments.
1.1 Introduction.
1.2 About This Book.
2 Basic Biology.
2.1 Background.
2.1.1 DNA Structures and Transcription.
2.2 Gene Expression Microarray Experiments.
3 Bayesian Linear Models for Gene Expression.
3.1 Introduction.
3.2 Bayesian Analysis of a Linear Model.
3.3 Bayesian Linear Models for Differential Expression.
3.4 Bayesian ANOVA for Gene Selection.
3.5 Robust ANOVA model with Mixtures of SingularDistributions.
3.6 Case Study.
3.7 Accounting for Nuisance Effects.
3.8 Summary and Further Reading.
4 Bayesian Multiple Testing and False Discovery RateAnalysis.
4.1 Introduction to Multiple Testing.
4.2 False Discovery Rate Analysis.
4.3 Bayesian False Discovery Rate Analysis.
4.4 Bayesian Estimation of FDR.
4.5 FDR and Decision Theory.
4.6 FDR and bFDR Summary.
5 Bayesian Classification for Microarray Data.
5.1 Introduction.
5.2 Classification and Discriminant Rules.
5.3 Bayesian Discriminant Analysis.
5.4 Bayesian Regression Based Approaches to Classification.
5.5 Bayesian Nonlinear Classification.
5.6 Prediction and Model Choice.
5.7 Examples.
5.8 Discussion.
6 Bayesian Hypothesis Inference for Gene Classes.
6.1 Interpreting Microarray Results.
6.2 Gene Classes.
6.3 Bayesian Enrichment Analysis.
6.4 Multivariate Gene Class Detection.
6.5 Summary.
7 Unsupervised Classification and BayesianClustering.
7.1 Introduction to Bayesian Clustering for Gene ExpressionData.
7.2 Hierarchical Clustering.
7.3 K-Means Clustering.
7.4 Model-Based Clustering.
7.5 Model-Based Agglomerative Hierarchical Clustering.
7.6 Bayesian Clustering.
7.7 Principal Components.
7.8 Mixture Modeling.
7.8.1 Label Switching.
7.9 Clustering Using Dirichlet Process Prior.
7.9.1 Infinite Mixture of Gaussian Distributions.
8 Bayesian Graphical Models.
8.1 Introduction.
8.2 Probabilistic Graphical Models.
8.3 Bayesian Networks.
8.4 Inference for Network Models.
9 Advanced Topics.
9.1 Introduction.
9.2 Analysis of Time Course Gene Expression Data.
9.3 Survival Prediction Using Gene Expression Data.
Appendix A: Basics of Bayesian Modeling.
A.1 Basics.
A.1.1 The General Representation Theorem.
A.1.2 Bayes' Theorem.
A.1.3 Models Based on Partial Exchangeability.
A.1.4 Modeling with Predictors.
A.1.5 Prior Distributions.
A.1.6 Decision Theory and Posterior and PredictiveInferences.
A.1.7 Predictive Distributions.
A.1.8 Examples.
A.2 Bayesian Model Choice.
A.3 Hierarchical Modeling.
A.4 Bayesian Mixture Modeling.
A.5 Bayesian Model Averaging.
Appendix B: Bayesian Computation Tools.
B.1 Overview.
B.2 Large-Sample Posterior Approximations.
B.2.1 The Bayesian Central Limit Theorem.
B.2.2 Laplace's Method.
B.3 Monte Carlo Integration.
B.4 Importance Sampling.
B.5 Rejection Sampling.
B.6 Gibbs Sampling.
B.7 The Metropolis Algorithm and Metropolis-Hastings.
B.8 Advanced Computational Methods.
B.8.1 Block MCMC.
B.8.2 Truncated Posterior Spaces.
B.8.3 Latent Variables and the Auto-Probit Model.
B.8.4 Bayesian Simultaneous Credible Envelopes.
B.8.5 Proposal Updating.
B.9 Posterior Convergence Diagnostics.
B.10 MCMC Convergence and the Proposal.
B.10.1 Graphical Checks for MCMC Methods.
B.10.2 Convergence Statistics.
B.10.3 MCMC in High-Throughput Analysis.
B.11 Summary.
References.
Index.


Bani Mallick, Department of Statistics, Texas A&MUniversity, USA.
Veera Balandandayuthapani, Department of Biostatistics,Anderson Cancer Center, Texas, USA.
David L. Gold, Department of Biostatistics, School of PublicHealth and Health Professions, University at Buffalo, The StateUniversity of New York, USA.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.