Maramorosch / Shatkin / Murphy | Advances in Virus Research | E-Book | www.sack.de
E-Book

E-Book, Englisch, 185 Seiten

Maramorosch / Shatkin / Murphy Advances in Virus Research


1. Auflage 2009
ISBN: 978-0-08-095087-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 185 Seiten

ISBN: 978-0-08-095087-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Published since 1953, Advances in Virus Research covers a diverse range of in-depth reviews providing a valuable overview of the current field of virology. The impact factor for 2007 is 3.120, placing it 9th in the highly competitive category of virology.
* Contributions from leading authorities * Informs and updates on all the latest developments in the field

Maramorosch / Shatkin / Murphy Advances in Virus Research jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Advances in Virus Research;4
3;Copyright Page;5
4;Contents;6
5;Chapter 1: Looking Back in 2009 at the Dawning of Antiviral Therapy Now 50 Years Ago: An Historical Perspective;8
5.1;I. Introduction;10
5.2;II. Thiosemicarbazones: The First Antiviral Drugs Found Active Against the Poxvirus Vaccinia Virus;11
5.3;III. Renaissance of the Poxvirus Inhibitors: Antiviral Drugs Against a Bioterrorist Poxvirus (Variola Virus) Attack;13
5.4;IV. Benzimidazole Derivatives: Second Attempt to Launch the Antiviral Chemotherapy Era;15
5.5;V. Renaissance of the Benzimidazole Derivatives: Now Turning into Lead Candidates for the Treatment of Human CMV Infections;18
5.6;VI. 5-Substituted 2'-Deoxyuridines: Idoxuridine (IDU) and Trifluridine (TFT), the Third and Definitive Attempt to Unleash Antiviral Chemotherapy;20
5.7;VII. 5-Substituted 2'-Deoxyuridines: IDU (and TFT) as the Starting Point(s) for Other 5-Substituted 2'-Deoxyuridines, that is, BVDU [(E)-5-(2-Bromovinyl)-2'-Deoxyuridine];22
5.8;VIII. Arabinosyladenine (ara-A), Originally Conceived as an Antitumor Agent, the First Antiviral Drug Licensed and Used for Systemic Treatment;23
5.9;IX. Acyclovir: The Start of the Selective Antiviral Chemotherapy Era, and Still the ``Gold Standard´´ for HSV Therapy;25
5.10;X. Anti-influenza Virus Therapy: A First Attempt (DRB), Followed by a Second (Amantadine) and a Third Attempt (Neuraminidase Inhibitors);27
5.11;XI. Ribavirin and Interferon, Two ``Old-Timers´´, Joining Forces in the Treatment of a Relatively New Disease, Hepatitis C;29
5.12;XII. (S)-9-(2,3-Dihydroxypropyl)adenine (DHPA), the First Acyclic Adenosine Analog, Leading to S-Adenosylhomocysteine (SAH) Hydrol Inhibitors as Broad-Spectrum Antiviral Agents;30
5.13;XIII. (S)-9-(2,3-Dihydroxypropyl)adenine (DHPA) Leading to the First Acyclic Nucleoside Phosphonate, (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)Adenine (HPMPA), As a Broad-Spectrum Antiviral Agent;32
5.14;XIV. 9-(2-Phosphonylmethoxyethyl)adenine (PMEA), the Sister Compound of HPMPA;33
5.15;XV. From PMEA (Adefovir) to PMPA (tenofovir): It All Depends on the Substitution of a Methyl Group for a Hydrogen;35
5.16;XVI. Suramin, the First Antiviral Drug Ever Shown to Inhibit HIV Infection Both in vitro and in vivo;36
5.17;XVII. The Nucleoside Reverse Transcriptase Inhibitors (NRTIs) with Azidothymidine (AZT) as the Starting Point;37
5.18;XVIII. The Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), with the HEPT and TIBO Derivatives as the Starting Point;39
5.19;XIX. The HIV Protease Inhibitors (PIs), Hailed From Their Inception, as Resulting from rational design;41
5.20;XX. New HIV Inhibitors, Targeted at Either Fusion (Enfuvirtide), Coreceptor usage (maraviroc), or Integrase (Raltegravir);47
5.21;XXI. Conclusion;49
5.22;Acknowledgment;50
5.23;References;50
6;Chapter 2: Use of Animal Models to Understand the Pandemic Potential of Highly Pathogenic Avian Influenza Viruses;62
6.1;I. Introduction;63
6.2;II. Influenza A Virus Subtypes and Host Range;64
6.3;III. Avian Influenza A Virus in Humans;67
6.4;IV. Use of the Mouse Model to Study Influenza Virus Pathogenesis;70
6.4.1;A. Mouse model for human influenza A virus pathogenesis;70
6.4.2;B. Mouse model for H5N1 virus pathogenesis;72
6.4.3;C. Mouse model for H7 virus pathogenesis;74
6.4.4;D. Gene knockout mice in the study of avian influenza;75
6.4.5;E. Tropism of avian influenza viruses;77
6.5;V. Use of the Ferret Model to Study Influenza Virus Pathogenesis;78
6.5.1;A. Ferret model for human influenza A virus pathogenesis;78
6.5.2;B. Ferret model for H5N1 virus pathogenesis;79
6.5.3;C. Ferret model for H7 virus pathogenesis;80
6.5.4;D. Transmissibility of avian influenza viruses;81
6.6;VI. Molecular Basis of Avian Influenza Pathogenesis;82
6.6.1;A. Hemagglutinin cleavage site;83
6.6.2;B. Surface glycoproteins (HA and NA);84
6.6.3;C. Polymerase complex;85
6.6.4;D. PB2 protein;86
6.6.5;E. PB1-F2 protein;88
6.6.6;F. NS1 protein;88
6.7;VII. Conclusions;89
6.8;Acknowledgments;91
6.9;References;91
7;Chapter 3: Virus Versus Host Cell Translation: Love and Hate Stories;106
7.1;I. Introduction;110
7.2;II. Regulation Prior to Translation;111
7.2.1;A. Editing;111
7.2.1.1;1. Editing by nucleotide modification;111
7.2.1.2;2. Editing by nucleotide addition;113
7.2.2;B. Splicing;115
7.2.3;C. Subgenomic RNA synthesis;117
7.3;III. Initiation of Translation;118
7.3.1;A. Cap-dependent initiation;118
7.3.2;B. Closed-loop model or circularization;119
7.3.3;C. VPg and initiation;122
7.3.4;D. IRES-directed initiation;123
7.3.5;E. Non-AUG initiation codons;126
7.3.6;F. Multiple reading frames;129
7.3.6.1;1. Leaky scanning;129
7.3.6.1.1;a. In-frame initiation;130
7.3.6.1.2;b. Overlapping ORFs;130
7.3.6.2;2. Reinitiation;132
7.3.6.3;3. Shunting;134
7.3.7;G. Modification of cell factors involved in initiation;135
7.3.7.1;1. Phosphorylation of eIF2alpha;136
7.3.7.2;2. Modification of eIF4E and 4E-BP;138
7.3.7.2.1;a. Dephosphorylation of eIF4E and of 4E-BP1;139
7.3.7.2.2;b. Phosphorylation of eIF4E and 4E-BP1;141
7.3.7.3;3. Modification of eIF4G;141
7.3.7.3.1;a. Cleavage of eIF4G;141
7.3.7.3.2;b. Phosphorylation of eIF4G;142
7.3.7.4;4. Cleavage of PABP;143
7.3.7.5;5. Substitution of PABP;143
7.3.7.6;6. Cleavage of PBCP2;144
7.4;IV. Elongation of Translation;144
7.4.1;A. Frameshift;144
7.4.2;B. Modification of elongation factors;147
7.5;V. Termination of Translation;148
7.5.1;A. Readthrough;148
7.5.2;B. Suppressor tRNAs;152
7.5.2.1;1. Suppressors of UAG/UAA codons;152
7.5.2.2;2. Suppressors of UGA codons;152
7.5.3;C. Binding of release factors;153
7.6;VI. Conclusions;153
7.7;Acknowledgments;154
7.8;References;154
8;Index;178



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.