• Neu
Martínez-Villaseñor / Martínez-Seis / Pichardo | Artificial Intelligence – COMIA 2025 | E-Book | www.sack.de
E-Book

E-Book, Englisch, 356 Seiten

Reihe: Artificial Intelligence (R0)

Martínez-Villaseñor / Martínez-Seis / Pichardo Artificial Intelligence – COMIA 2025

17th Mexican Congress, Mexico City, Mexico, May 12–16, 2025, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-3-031-97910-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

17th Mexican Congress, Mexico City, Mexico, May 12–16, 2025, Proceedings, Part II

E-Book, Englisch, 356 Seiten

Reihe: Artificial Intelligence (R0)

ISBN: 978-3-031-97910-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The 3-volume set CCIS 2552 - 2554 constitutes the proceedings of the 17th Mexican Conference on Artificial Intelligence, COMIA 2025, which took place in Mexico City, Mexico, during May 12-16, 2025.

The totel of 83 papers included in the proceedings was carefully reviewed and selected from 199 submissions. They were organized in topical sections as follows:

Part I: Natural languages processing; robotics; signal processing; ethics and regulation;

Part II: Computer Vision and Image Processing; Deep Learning; Machine Learning and Pattern Recognition; Data Mining;

Part III: Artificial intelligence applications; medical applications.

Martínez-Villaseñor / Martínez-Seis / Pichardo Artificial Intelligence – COMIA 2025 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Computer Vision and Image Processing

.- Identification of Dangerous Driving Patterns through Computer Vision and Deep Learning.
.- Fire risk assessment in San Luis Potos´i’s middle zone through CBIR and evolutionary computation techniques for land image analysis.
.- Embedded system for weapon and intimidation position recognition with alerts sent to smartphones.
.- Eye Feature Segmentation for the Identification of Artificially Generated Faces.
.- Encoder-decoder neural network model inspired by retinal signal processing in the retina and decoding in the visual cortex.
.- Automated design of interest point detectors using grammatical evolution.
.- Fruit Fly Classification (Diptera: Tephritidae) in Images, Applying Transfer Learning.
.- Stress Detection of Students via Low-Resolution Thermal Images using ROIs.
.- ARCanvas: A Mobile-based Collaborative Colocated AR Drawing Application.
.- Identification of Wildfire Risk Areas Through Semantic Segmentation.
.- Detection of Physical Violence at Schools Using Machine Learning and Computer Vision.
.- Alternative Strategies for Feature Engineering in a Mexican Sign Language Recognition.
.- Digital Image Synthesis Using Multi-Tree Genetic Programming.
.- Representation of Neuro-Symbolic Networks for sub-algebraic terms.

.- Deep Learning

.- Enhancing Intrusion Detection via Hierarchical Transfer Learning for Real Network Traffic.
.- Filtering of Geophysical Data Using Unsupervised Methods and Multiresolution Analysis.

.- Machine Learning and Pattern Recognition

.- A study for air quality analysis in the city of Puebla.
.- Predicting Complete Pass Probabilities with Graphs.
.- Optimized Photovoltaic Energy Forecasting through Extended Data and Python-Based Artificial Neural Networks.
.- Improved MDLP Algorithm for Supervised Discretization of Continuous Data.
.- Human-friendly Explanations Checklist for Reinforcement Learning: XRL H-F-E Checklist.
.- Reinforcement Learning in Urbanism: Building the Cities of the Future with AI.

.- Data Mining

.- Predicting Hardness and Elastic Modulus of Cast Aluminum Alloys from Chemical Composition Using Artificial Neural Networks.
.- Gini Index-Based Identification of Predictors for Undergraduate Academic Performance.
.- Optimizing Food Traceability through QR, NFC, IoT Technologies, and Artificial Intelligence to Enhance Food Safety and Reduce Waste.
.- Characterization and classification of Mexican woods by local texture analysis using deep learning techniques.
.- Estimating Evapotranspiration Using Random Forest Regression and Remote Sensing Data.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.