E-Book, Englisch, 500 Seiten
Menon / Kinoshita / Orlean Glycosylphosphatidylinositol (GPI) Anchoring of Proteins
1. Auflage 2009
ISBN: 978-0-08-096095-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 500 Seiten
ISBN: 978-0-08-096095-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This volume of The Enzymes features high-caliber thematic articles on the topic of glycosylphosphatidylinositol (GPI) anchoring of proteins.
* Contributions from leading authorities
* Informs and updates on all the latest developments in the field
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;The Enzymes;4
3;Copyright;5
4;Contents;6
5;Preface;12
6;Chapter 1: Overview of GPI Biosynthesis;14
6.1;I. Abstract;14
6.2;II. Introduction of GPI-Anchored Proteins;15
6.3;III. Structure of GPI-APs;19
6.4;IV. Biosynthesis of GPI and Attachment to Proteins;20
6.5;V. Lipid Remodeling of GPI and GPI-APs;28
6.6;VI. Enzymes Involved in Modification of GPI Glycan in GPI-APs;33
6.7;References;34
7;Chapter 2: The N-Acetylglucosamine-PI Transfer Reaction, the GlcNAc-PI Transferase Complex, and Its Regulation;44
7.1;I. Abstract;44
7.2;II. The N-Acetylglucosamine-PI Transfer Reaction;45
7.3;III. Biological Importance of the GPI-GlcNAc Transferase;46
7.4;IV. The GPI-GlcNAc Transferase Complex;46
7.5;V. Regulation of GPI-GlcNAc Transferase Activity;51
7.6;VI. Concluding Remarks;56
7.7;Acknowledgment;56
7.8;References;57
8;Chapter 3: The GlcNAc-PI de-N-acetylase: Structure, Function, and Activity;62
8.1;I. Abstract;62
8.2;II. Introduction;63
8.3;III. Protein Structure and Function;63
8.4;IV. Recombinant Protein Expression;68
8.5;V. Activity Assays;71
8.6;VI. Enzyme Substrate Specificity;74
8.7;References;75
9;Chapter 4: Inositol Acylation/Deacylation;78
9.1;I. Abstract;78
9.2;II. Introduction: PI-PLC-Resistant GPI Molecules;79
9.3;III. Variations in Inositol Acylation/Deacylation Among Organisms;80
9.4;IV. Enzymes Involved in Inositol Acylation/Deacylation and Their Functions;85
9.5;V. Perspective and Concluding Remarks;95
9.6;Acknowledgments;96
9.7;References;96
10;Chapter 5: Mannosylation;104
10.1;I. Abstract;104
10.2;II. Overview of Biosynthetic Pathway for GPI Mannosylation;105
10.3;III. Dol-P-Man as a Substrate for GPI-Man-Ts;105
10.4;IV. GPI-Mannosyltransferases (GPI-MAN-Ts);107
10.5;V. Structural Consideration of Glycosyltransferases that use Dol-P-monosaccharides as Donor Substrates;110
10.6;VI. Substrate Specificities and Inhibitors for Mannosylations;115
10.7;VII. GPI Mannosylation-Related Diseases;116
10.8;VIII. Polyprenol-Phosphate-Mannose (PPM)-Dependent Mannosyltransferases in Mycobacteria;117
10.9;IX. Mycobacteria Genes Homologous to Mammalian PIG-M;120
10.10;References;122
11;Chapter 6: Phosphoethanolamine Addition to Glycosylphosphatidylinositols;130
11.1;I. Abstract;130
11.2;II. Sites of Etn-P Modification on Protein-Bound and Free GPIs;131
11.3;III. Phosphoethanolamine Donor;132
11.4;IV. Proteins Involved in Etn-P Addition;133
11.5;V. Concluding Remarks;140
11.6;References;141
12;Chapter 7: Attachment of a GPI Anchor to Protein;146
12.1;I. Abstract;146
12.2;II. The GPI Signal Sequence;147
12.3;III. The Transamidation Reaction;149
12.4;IV. GPI Transamidase (GPIT);149
12.5;V. GPI8/Gpi8p;151
12.6;VI. GAA1/Gaa1p;153
12.7;VII. PIG-T/Gpi16p;154
12.8;VIII. PIG-U/Gab1p;155
12.9;IX. PIG-S/Gpi17;156
12.10;X. TTA1 and TTA2;156
12.11;XI. Final Remarks;157
12.12;XII. Future Work;157
12.13;Acknowledgements;158
12.14;References;158
13;Chapter 8: Split Topology of GPI Biosynthesis;164
13.1;I. Abstract;164
13.2;II. Synthesis and De-N-Acetylation of GlcNAc-PI Occur on the Cytoplasmic Face of the ER;164
13.3;III. Inositol Acylation Probably Occurs in the ER Lumen;165
13.4;IV. Beyond Inositol Acylation: Later Reactions of GPI Assembly (Mannosylation, Phosphoethanolamine Addition, and GPI Transfer to Protein) Occur in the ER Lumen;166
13.5;V. GlcN-PI Flips Across the ER Membrane During GPI Biosynthesis;167
13.6;VI. Conclusion;169
13.7;Acknowledgments;169
13.8;References;170
14;Chapter 9: GPIs of Apicomplexan Protozoa;172
14.1;I. Abstract;172
14.2;II. Introduction: Apicomplexan Parasites;173
14.3;III. GPI Structures of Plasmodium falciparum and Toxoplasma gondii;175
14.4;IV. Immunological Functions of Protozoan GPIs;183
14.5;References;189
15;Chapter 10: Chemical Synthesis of Glycosylphosphatidylinositol (GPI) Anchors;194
15.1;I. Abstract;194
15.2;II. Introduction;195
15.3;III. Synthesis of GPI Anchor of VSG of T. brucei;196
15.4;IV. Synthesis of GPI Anchor of Saccharomyces cerevisiae (Yeast);208
15.5;V. Synthesis of GPI Anchor of Rat Brain Thy-1;213
15.6;VI. Synthesis of GPI Anchor of P. falciparum;217
15.7;VII. Synthesis of GPI Anchors of Trypanosoma cruzi;222
15.8;VIII. Synthesis of GPI Anchor of CD52;229
15.9;IX. Synthesis of GPI Anchor of Lipophosphoglycan (LPG) of Leishmania parasite;231
15.10;X. Synthesis of GPI Anchor of GIPL of T. cruzi;234
15.11;XI. Other Notable Contributions;236
15.12;XII. Conclusion;237
15.13;References;237
16;Chapter 11: GPI-Based Malarial Vaccine: Past, Present, and Future;242
16.1;I. Abstract;242
16.2;II. Introduction to GPI in Malarial Pathogenesis;243
16.3;III. Synthetic GPI as Antitoxic Malarial Vaccine Candidate in a Rodent Model;246
16.4;IV. Synthetic GPI Microarray to Define Antimalarial Antibody Response;248
16.5;V. Synthetic GPI as Tools to Study Malaria Associated Anemia;251
16.6;VI. Conclusion and Perspectives;253
16.7;Acknowledgments;255
16.8;References;255
17;Chapter 12: Inhibitors of GPI Biosynthesis;260
17.1;I. Abstract;260
17.2;II. Introduction;261
17.3;III. GPI Biosynthesis;262
17.4;IV. GlcNAc Transferase;263
17.5;V. GlcNAc-PI De-N-Acetylase;263
17.6;VI. Inositol Acyltransferase;266
17.7;VII. Mannosylation of GPI Anchor Intermediates;267
17.8;VIII. Mannose Analogs;267
17.9;IX. a1-4-Mannosyltransferase (MT-I);268
17.10;X. a1-6-Mannosyltransferase (MT-II);269
17.11;XI. a1-2-Mannosyltransferase (MT-III);269
17.12;XII. Ethanolamine Phosphate Transferases;270
17.13;XIII. Inositol Deacylation;270
17.14;XIV. GPI Lipid Remodelling;271
17.15;XV. GPI Transamidase;271
17.16;XVI. Species-Specific Modifications to the Core GPI Structure;272
17.17;XVII. Perspectives;273
17.18;Acknowledgments;273
17.19;References;274
18;Chapter 13: Transport of GPI-Anchored Proteins: Connections to Sphingolipid and Sterol Transport;282
18.1;I. Abstract;282
18.2;II. ER Exit of GPI-Anchored Proteins;283
18.3;III. Sorting of GPI-Anchored Proteins upon ER Exit;286
18.4;IV. Defects in GPI-Anchored Protein Trafficking and Folding;288
18.5;V. GPI-Anchored Protein and Lipid Traffic;291
18.6;VI. Parallels and Differences between Yeast and Mammalian Cells;296
18.7;Acknowledgments;296
18.8;References;296
19;Chapter 14: Mechanisms of Polarized Sorting of GPI-anchored Proteins in Epithelial Cells;302
19.1;I. Abstract;302
19.2;II. Introduction;303
19.3;III. Secretory Pathway and Polarized Sorting;303
19.4;IV. Site of Sorting and Routes to the Surface;313
19.5;V. Regulation of Membrane Traffic;319
19.6;VI. Conclusion/Perspectives;321
19.7;References;322
20;Chapter 15: GPI Proteins in Biogenesis and Structure of Yeast Cell Walls;334
20.1;I. Abstract;334
20.2;II. Fungal GPI-Anchored Proteins and the Cell Wall: General Introduction;335
20.3;III. A Brief History of the Discovery of Fungal GPI Proteins in Yeast Cell Walls;337
20.4;IV. Structure of Yeast Cell Walls;339
20.5;V. Ordered Cell Wall Assembly and Addition of GPI Proteins;342
20.6;VI. Phylogenetics of GPI-Cell Wall Transglycosylation;343
20.7;VII. Roles of GPIs in Biogenesis of GPI-Cell Wall Cross-Links;345
20.8;VIII. Surface Display in Yeast;350
20.9;IX. Summary;358
20.10;References;358
21;Chapter 16: Inherited GPI Deficiency;370
21.1;I. Abstract;370
21.2;II. Introduction;371
21.3;III. Disorders of GPI Deficiency;374
21.4;IV. A Tentative Model of Transcriptional Control of PIG-M by Sp1 and its Dysregulation in IGD;380
21.5;V. IGD: Questions and Perspectives;382
21.6;Acknowledgment;383
21.7;References;383
22;Author Index;388
23;Index;422
24;Color Plates;431