E-Book, Englisch, 307 Seiten
Mishra Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications
1. Auflage 2016
ISBN: 978-3-319-49512-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 307 Seiten
ISBN: 978-3-319-49512-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book summarizes recent research and development in the field of nanostructured ceramics and their composites. It presents selected examples of ceramic materials with special electronic, catalytic and optical properties and exceptional mechanical characteristics. A special focus is on sol-gel based and organic-inorganic hybrid nanoceramic materials. The book highlights examples for preparation techniques including scale-up, properties of smart ceramic composites, and applications including e.g. waste water treatment, heavy metal removal, sensors, electronic devices and fuel cells. Recent challenges are addressed and potential solutions are suggested for these. This book hence addresses chemists, materials scientists, and engineers, working with nanoceramic materials and on their applications.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;About the Editor;15
4;1 Nanoceramics: Fundamentals and Advanced Perspectives;16
4.1;Abstract;16
4.2;1.1 General Introduction to Nanomaterials;16
4.2.1;1.1.1 Introduction to Nanoceramics;17
4.3;1.2 Techniques to Develop Nanoceramics;18
4.3.1;1.2.1 Aqueous Sol–Gel Chemistry for the Synthesis of Nanoceramics;19
4.4;1.3 Recent Progress in the Field of Common and Advanced of Nanoceramics;20
4.4.1;1.3.1 Silicate-Based Nanoceramics;21
4.4.2;1.3.2 Zirconia-Based Nanoceramics;22
4.4.3;1.3.3 Titania-Based Nanoceramics;22
4.4.4;1.3.4 Borate-Based Nanoceramics;23
4.4.5;1.3.5 Silicon Carbide-Based Nanoceramics;24
4.4.6;1.3.6 Boron Carbide-Based Nanoceramics;24
4.5;1.4 Applications of Nanoceramics;25
4.5.1;1.4.1 Industrial Applications;25
4.5.2;1.4.2 Environmental Applications;27
4.5.3;1.4.3 Biomedical and Healthcare Applications;28
4.5.4;1.4.4 Defence and Space Applications;29
4.5.5;1.4.5 Strategic Applications;30
4.6;1.5 Future Scope of Nanoceramics;30
4.7;Acknowledgments;31
4.8;References;31
5;2 Advance Techniques for the Synthesis of Nanostructured Zirconia-Based Ceramics for Thermal Barrier Application;36
5.1;Abstract;36
5.2;2.1 Introduction;36
5.3;2.2 Zirconia Structure and Its Applications;37
5.3.1;2.2.1 Types of Stabilized Zirconia;39
5.3.1.1;2.2.1.1 Magnesia-Stabilized Zirconia;41
5.3.1.2;2.2.1.2 Calcia-Stabilized Zirconia (CaSZ);50
5.3.1.3;2.2.1.3 Yttria Stabilized Zirconia (YSZ);53
5.3.1.4;2.2.1.4 Ceria Stabilized Zirconia (ZrO2–CeO2 Solid Solution);64
5.3.1.5;2.2.1.5 Ceria, Yttria Co-stabilized Zirconia (CYSZ);70
5.3.1.6;2.2.1.6 Scandia, Yttria Co-stabilized Zirconia (ScYSZ);76
5.3.1.7;2.2.1.7 Rare Earth Zirconates;88
5.3.1.8;2.2.1.8 Zirconia—Alumina Nanocomposite;92
5.4;2.3 Summary;98
5.5;References;98
6;3 Synthesis of Nanostructure Ceramics and Their Composites;107
6.1;Abstract;107
6.2;3.1 Introduction;107
6.3;3.2 Synthesis of Nanocomposite Ceramic Powders;108
6.3.1;3.2.1 Conventional Powder Method;109
6.3.2;3.2.2 Mechanochemical Synthesis;110
6.3.3;3.2.3 Polymer Precursor Route;111
6.3.4;3.2.4 Vapor-Phase Reaction Technique;112
6.3.5;3.2.5 Self-propagating High-Temperature Synthesis and Combustion Synthesis;113
6.3.6;3.2.6 Solution Based Techniques;115
6.3.6.1;3.2.6.1 Sol–Gel;115
6.3.6.2;3.2.6.2 Co-precipitation;117
6.3.6.3;3.2.6.3 Spray Decomposition;119
6.3.6.4;3.2.6.4 Solution Combustion;120
6.3.6.5;3.2.6.5 Surface Modification Methods;120
6.3.6.6;3.2.6.6 Industrial Production of Ceramic Composite Powders;122
6.4;3.3 Summary;123
6.5;3.4 Future Scenario;123
6.6;Acknowledgment;124
6.7;References;124
7;4 Structure, Stabilities, and Electronic Properties of Smart Ceramic Composites;127
7.1;Abstract;127
7.2;4.1 Introduction;127
7.3;4.2 Theoretical Methodology;129
7.3.1;4.2.1 First-Principles Total Energy Calculation;129
7.3.2;4.2.2 Formation Energy;130
7.3.3;4.2.3 Scanning Tunneling Microscopy Images;130
7.3.4;4.2.4 Computational Settings;130
7.4;4.3 Pristine h-BN Monolayer;131
7.4.1;4.3.1 Geometry and Energy Band Structure;131
7.4.2;4.3.2 Strain Effects and Electronic Properties;131
7.5;4.4 Carbon-Doped h-BN Monolayer;134
7.5.1;4.4.1 Atomic Structure and Energetics;134
7.5.2;4.4.2 Ionization Energy;134
7.5.3;4.4.3 Energy Band Structure;136
7.5.4;4.4.4 Work Function;138
7.5.5;4.4.5 Electronic State;139
7.5.6;4.4.6 Scanning Tunneling Microscopy Image;140
7.5.7;4.4.7 Total Charge Density;142
7.6;4.5 Summary;143
7.7;Acknowledgments;143
7.8;References;143
8;5 Advancement of Glass-Ceramic Materials for Photonic Applications;146
8.1;Abstract;146
8.2;5.1 Introduction;146
8.3;5.2 Transparent Glass-Ceramics and Their Application to Integrated and Fibre Optics;148
8.3.1;5.2.1 Optical Planar Waveguides;149
8.3.2;5.2.2 Glass-Ceramic Optical Fibres;150
8.4;5.3 Photoluminescence in Glass-Ceramics and Its Applications;151
8.4.1;5.3.1 Luminescence from RE-Activated Planar Waveguides;152
8.4.2;5.3.2 Active Glass-Ceramic Optical Fibres;152
8.5;5.4 Glass-Ceramics for Solar Cells;154
8.5.1;5.4.1 Solar Cells and Their Efficiencies;154
8.5.2;5.4.2 Luminescent Conversion Layers;156
8.5.3;5.4.3 Thermo-photovoltaics;159
8.6;5.5 Other Photonics Applications;160
8.6.1;5.5.1 Photonic Crystals;161
8.7;5.6 Summary and Outlook;163
8.8;Acknowledgments;164
8.9;References;165
9;6 Ceramic Nanocomposites for Solid Oxide Fuel Cells;169
9.1;Abstract;169
9.2;6.1 Introduction;170
9.3;6.2 Solid Oxide Fuel Cell (SOFC);170
9.3.1;6.2.1 Fundamental Mechanism of SOFC;170
9.3.2;6.2.2 Type of SOFC;171
9.3.3;6.2.3 Components of a SOFC;172
9.4;6.3 Anode (Fuel Electrode);172
9.4.1;6.3.1 Nickel (II) Oxide (NiO);172
9.4.1.1;6.3.1.1 Properties of NiO;173
9.4.1.2;6.3.1.2 Synthesis of NiO;173
9.4.2;6.3.2 Nickel/Yittria Stabilized Zirconia (Ni/YSZ) Cermet Anode;174
9.4.2.1;6.3.2.1 Synthesis of Ni/YSZ Cermet Anode;175
9.4.2.2;6.3.2.2 Effect of Ni/YSZ Composition Ratio;176
9.4.2.3;6.3.2.3 Effect of Grain Size;177
9.4.3;6.3.3 Nickel/Gadolinium-Doped Ceria (Ni/GDC) Cermet Anode;178
9.4.3.1;6.3.3.1 Synthesis of Ni/GDC Cermet Anode;178
9.5;6.4 Electrolyte;179
9.5.1;6.4.1 Yttria Stabilized Zirconia (YSZ);179
9.5.1.1;6.4.1.1 Properties of YSZ;179
9.5.1.1.1;Effect of Yttria Molarity on Grain Size;179
9.5.1.1.2;Effect of Sintering Temperature;179
9.5.1.2;6.4.1.2 Synthesis of YSZ;180
9.5.1.2.1;Hydrothermal Method;182
9.5.1.2.2;Sol–Gel Method;183
9.5.1.2.3;Electrospray Flame Synthesis Method;183
9.5.1.3;6.4.1.3 Other Materials;184
9.5.1.3.1;Zirconia-Based Electrolytes (Other Dopants);184
9.5.1.3.2;Ceria-Based Electrolytes;184
9.5.1.3.3;Lanthanum Gallate-Based Electrolyte;185
9.6;6.5 Cathode (Air Electrode);186
9.6.1;6.5.1 Strontium-Doped Lanthanum Manganite (LSM);186
9.6.1.1;6.5.1.1 Synthesis of Strontium-Doped Lanthanum Manganite;186
9.6.1.2;6.5.1.2 Effect of Microstructural Properties of LSM Cathode and Electrochemical Performance;187
9.6.1.3;6.5.1.3 Effect of Variation on Sr Composition Ratio on LSM Powder;187
9.6.1.4;6.5.1.4 Effects of Modification of LSM Based Cathode;188
9.6.2;6.5.2 LSCF;188
9.6.2.1;6.5.2.1 LSCF Powder Synthesis Methods and Surface Properties;189
9.6.2.2;6.5.2.2 Effect of Compositional Ratio of LSCF on Cathodic Performance;189
9.6.2.3;6.5.2.3 Modifications of LSCF Based Cathode;189
9.7;6.6 Conclusion;190
9.8;References;192
10;7 A Review of Nanoceramic Materials for Use in Ceramic Matrix Composites;196
10.1;Abstract;196
10.2;7.1 Introduction;197
10.3;7.2 Ceramics;197
10.4;7.3 Ceramic Matrix Composites;197
10.4.1;7.3.1 Definition and Advantages;198
10.4.2;7.3.2 Types of CMC’s;199
10.4.3;7.3.3 Continuous Fiber-Reinforced;201
10.4.4;7.3.4 Parts of a CMC with Focus on Nanoceramics;201
10.4.5;7.3.5 Fibers;201
10.4.6;7.3.6 Oxides and Non-oxides;201
10.4.7;7.3.7 Brands, Diameters and Grain Sizes;202
10.4.8;7.3.8 Grain Size and Fiber Durability;203
10.4.9;7.3.9 Interfaces;204
10.5;7.4 CVD Application of BN/Graphite Interfaces;205
10.5.1;7.4.1 Matrices;206
10.5.2;7.4.2 PIP or CVI Matrices;206
10.5.3;7.4.3 Characterization of CMC’s;207
10.6;7.5 Application of CMC’s;209
10.6.1;7.5.1 Electronics;209
10.6.2;7.5.2 Heat Sinks;210
10.6.3;7.5.3 Aerospace and Aircraft;211
10.7;7.6 Background;211
10.7.1;7.6.1 History of CMC’s in Regard to Nanoceramics;211
10.7.2;7.6.2 Advancements in CVD;215
10.7.2.1;7.6.2.1 Fabrication of CVD/CVI Components;215
10.7.2.2;7.6.2.2 Advantages of CVD/CVI;215
10.7.3;7.6.3 Advancements in Preceramic Polymers;216
10.7.3.1;7.6.3.1 Production of Preceramic Polymers;216
10.7.3.2;7.6.3.2 Advantages of CVD/CVI;218
10.8;7.7 Nanoceramics in CMC’s;218
10.8.1;7.7.1 Fibers;219
10.8.1.1;7.7.1.1 Ceramic Materials (Alumina, SiC, Silica, Zirconia);219
10.8.1.2;7.7.1.2 Preceramic Polymer Sources;220
10.8.1.3;7.7.1.3 Grain Growth and Control;221
10.8.1.4;7.7.1.4 Nanocrystalline Versus Amorphous, Advantages and Disadvantages;222
10.8.1.5;7.7.1.5 Analyses;223
10.8.2;7.7.2 Interfaces;224
10.8.2.1;7.7.2.1 Purpose, Mechanical Advantages;224
10.8.2.2;7.7.2.2 Boron Nitride, Graphite Solid-State Lubrication Properties with a Focus on Nanoceramics;225
10.8.2.3;7.7.2.3 LP-CVD Deposition of BN/ Graphite Interface;225
10.8.2.4;7.7.2.4 Advantages of CVD Interface;227
10.8.2.5;7.7.2.5 Non-CVD Interface (Sol–Gel), Focus on Nanoscale Grains;228
10.8.3;7.7.3 Matrices;230
10.8.3.1;7.7.3.1 Materials, Fillers, Grain Size and Importance;230
10.8.3.2;7.7.3.2 Fabrication of Matrices;231
10.8.3.3;7.7.3.3 Preventing Grain Growth;234
10.8.3.4;7.7.3.4 Effect of Grain Growth on Mechanical Properties;234
10.8.3.5;7.7.3.5 Sintering Agents Versus Grain Growth Inhibitors;235
10.9;7.8 Future Work in Nanoceramics and Nanocomposites;236
10.9.1;7.8.1 Other Applications;236
10.9.1.1;7.8.1.1 Electronics;236
10.9.1.2;7.8.1.2 Transistors;236
10.9.1.3;7.8.1.3 Biological;237
10.9.1.4;7.8.1.4 Others;238
10.10;Acknowledgments;239
10.11;References;239
11;8 Application of Hydroxyapatite-Based Nanoceramics in Wastewater Treatment: Synthesis, Characterization, and Optimization;242
11.1;Abstract;242
11.2;8.1 Introduction;242
11.3;8.2 Treatment Techniques for Pollutants-Laden Wastewater;244
11.3.1;8.2.1 Adsorption Phenomenon;246
11.3.2;8.2.2 Fenton-like Degradation;247
11.4;8.3 Synthesis Routes and Forms of Hydroxyapatite-Based Materials;248
11.4.1;8.3.1 Hydrothermal Technique;248
11.4.2;8.3.2 Precipitation Technique;249
11.4.3;8.3.3 Sol–Gel Approach;250
11.5;8.4 Hydroxyapatite-Based Nanoceramic Materials in Water Treatment;252
11.6;8.5 Parameters Influencing Pollutants Adsorption by Hydroxyapatite-Based Materials;256
11.6.1;8.5.1 Effect of Solution pH and Hap Morphologies;256
11.6.2;8.5.2 Effect of Ionic Strength;257
11.7;8.6 Fenton-like Degradation of Pollutants by Hydroxyapatite-Based Materials;259
11.8;8.7 Proposed Future Perspectives;259
11.9;8.8 Conclusions;260
11.10;Acknowledgments;260
11.11;References;261
12;9 Sol–Gel Derived Organic–Inorganic Hybrid Ceramic Materials for Heavy Metal Removal;263
12.1;Abstract;263
12.2;9.1 Introduction;264
12.3;9.2 Method for Sol–Gel Hybrid Materials Preparation;265
12.3.1;9.2.1 Basics of the Sol–Gel Reactions;265
12.3.2;9.2.2 Application of Nonfunctional Silica Precursors;267
12.3.3;9.2.3 Application of Functional Organosilanes as a Silica Precursor;272
12.4;9.3 Removal of Heavy Metal Ions by Organic–Inorganic Hybrid Materials;276
12.4.1;9.3.1 Heavy Metal Ions Removal on Silica–Chitosan Hybrid Materials;277
12.4.2;9.3.2 Heavy Metal Ions Removal on Clay and Zeolite Chitosan Hybrid Materials;280
12.4.3;9.3.3 Heavy Metal Ions Removal on Magnetite Silica–Chitosan Hybrid Materials;280
12.4.4;9.3.4 Heavy Metal Ions Removal on Silica–Chitosan Hybrid Materials with Chelating Agents;281
12.5;9.4 Summary;282
12.6;9.5 Future Scenario;282
12.7;References;283
13;10 Hybrid Ceramic Materials for Environmental Applications;285
13.1;Abstract;285
13.2;10.1 Introduction;285
13.3;10.2 Ceramics;286
13.4;10.3 Ceramic Nanocomposites;287
13.4.1;10.3.1 Fabrication Techniques;288
13.4.1.1;10.3.1.1 Sol–Gel;289
13.4.1.2;10.3.1.2 Spark Plasma Sintering Method;290
13.4.1.3;10.3.1.3 Chemical Vapour Deposition;290
13.4.1.4;10.3.1.4 Magnetron Sputtering;290
13.4.1.5;10.3.1.5 Intercalation;291
13.4.1.6;10.3.1.6 Organometallic Pyrolysis;291
13.4.1.7;10.3.1.7 Combustion Synthesis;291
13.4.1.8;10.3.1.8 Solid-State Processing;292
13.5;10.4 Ceramic Processing and Properties;292
13.5.1;10.4.1 Mechanical Properties;293
13.5.2;10.4.2 Electrical Properties;293
13.5.3;10.4.3 Optical Properties;293
13.6;10.5 Environmental Applications of Ceramics and Ceramic Nanocomposites;295
13.6.1;10.5.1 Water Treatment and Remediation;295
13.6.2;10.5.2 Desalination;297
13.6.3;10.5.3 Adsorbents;298
13.6.4;10.5.4 Sensing Devices;299
13.6.5;10.5.5 Photo-Induced Self-cleaning;299
13.6.6;10.5.6 Dye-Sensitized Solar Cells (DSSC);301
13.6.7;10.5.7 Water Splitting;301
13.6.8;10.5.8 Air Purification and Remediation;302
13.6.9;10.5.9 Antibacterial Materials;303
13.7;10.6 Conclusion and Future Perspectives;304
13.8;Acknowledgements;304
13.9;References;305




