Moldave | Progress in Nucleic Acid Research and Molecular Biology | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band Volume 71, 569 Seiten, Web PDF

Reihe: Progress in Nucleic Acid Research and Molecular Biology

Moldave Progress in Nucleic Acid Research and Molecular Biology


1. Auflage 2002
ISBN: 978-0-08-052266-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band Volume 71, 569 Seiten, Web PDF

Reihe: Progress in Nucleic Acid Research and Molecular Biology

ISBN: 978-0-08-052266-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Progress in Nucleic Acid Research and Molecular Biology provides a forum for discussion of new discoveries, approaches, and ideas in molecular biology. It contains contributions from leaders in their fields and abundant references. - Nucleic acids are the fundamental building blocks of DNA and RNA and are found in virtually every living cell - Molecular biology is a branch of science that studies the physicochemical properties of molecules in a cell, including nucleic acids, proteins, and enzymes

Moldave Progress in Nucleic Acid Research and Molecular Biology jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover;1
2;Contents;6
3;Some Articles Planned for Future Volumes;12
4;Chapter 1. DNA Modifications by Antitumor Platinum and Ruthenium Compounds: Their Recognition and Repair ;14
4.1;I. Introduction;15
4.2;II. Current State of Knowledge on DNA Interactions of ClassicalŽ Antitumor Cisplatin and Its Clinically Ineffective trans Isomer ;16
4.3;III. DNA Interactions of Cisplatin Analogs ;38
4.4;IV. Activation of trans Geometry;51
4.5;V. Polynuclear Platinum Antitumor Drugs;55
4.6;VI. Antitumor Ruthenium Compounds ;62
4.7;VII. Concluding Remarks;67
4.8;References;67
5;Chapter 2. AMP- and Stress-Activated Protein Kinases: Key Regulators of Glucose-Dependent Gene Transcription in Mammalian Cells? ;82
5.1;I. AMP-Activated Protein Kinase;83
5.2;II. SNF1 and Glucose Repression in Yeast;84
5.3;III. AMPK and Regulation of Gene Transcription in Mammals;84
5.4;IV. Downstream Targets of AMPK and Gene Transcription;90
5.5;V. Mitogen- and Stress-Activated Protein Kinases;91
5.6;VI. Conclusions;95
5.7;References;95
6;Chapter 3. Molecular Basis of Fidelity of DNA Synthesis and Nucleotide Specificity of Retroviral Reverse Transcriptases;104
6.1;I. Introduction;105
6.2;II. The Role of Reverse Transcriptase in Retroviral Mutagenesis;106
6.3;III. Retroviral Reverse Transcriptases;107
6.4;IV. Fidelity of Retroviral Reverse Transcriptases;110
6.5;V. Control of Fidelity at Initiation of Reverse Transcription;121
6.6;VI. Fidelity of Strand Transfer: Implications for Retroviral Recombination;122
6.7;VII. Contribution of Accessory Proteins to Fidelity of Reverse Transcription;123
6.8;VIII. Mutational Analysis of HIV-1 Reverse Transcriptase: The Effects of Mutations on Fidelity of DNA Synthesis ;125
6.9;IX. Biological Consequences of Increasing or Decreasing Fidelity;142
6.10;X. Conclusions and Future Perspectives ;144
6.11;References;145
7;Chapter 4. Muc4/Sialomucin Complex, the Intramembrane ErbB2 Ligand, in Cancer and Epithelia: To Protect and To Survive;162
7.1;I. Membrane Mucins;163
7.2;II. Muc4/SMC Structure and Functions;166
7.3;III. Muc4/SMC Contributions to Tumor Progression;173
7.4;IV. Muc4/SMC in Simple Epithelia;176
7.5;V. Muc4/SMC in Glandular Secretory Epithelia;183
7.6;VI. Muc4/SMC in Stratified Epithelia;190
7.7;VII. Conclusions and Future Directions;192
7.8;References;193
8;Chapter 5. Functions of Alphavirus Nonstructural Proteins in RNA Replication ;200
8.1;I. Introduction;200
8.2;II. Replication Cycle of Alphaviruses;201
8.3;III. Alphavirus-Like Superfamily;203
8.4;IV. Replication of Alphavirus RNAs;205
8.5;V. Processing of Alphavirus Nonstructural Polyprotein P1234;210
8.6;VI. nsP1: A Unique RNA-Capping Enzyme and Membrane Anchor;211
8.7;VII. nsP2: A Multifunctional Enzyme and Regulatory Protein;217
8.8;VIII. nsP3: An Ancient Conserved Protein and Phosphoprotein;221
8.9;IX. nsP4: A Catalytic RNA Polymerase Subunit;223
8.10;X. The Replication Complex;224
8.11;References;227
9;Chapter 6. The Unique Biochemistry of Methanogenesis;236
9.1;I. Introduction;237
9.2;II. Methanogens: A Unique Group of Microorganisms;238
9.3;III. Biochemistry of Methanogenesis;241
9.4;IV. Mechanism of ATP Synthesis in Methanogenic Archaea;253
9.5;V. Energy-Conserving Systems in Methanosarcina Strains;255
9.6;VI. Energy Conservation in Obligate Hydrogenotrophic Methanogens;283
9.7;References;287
10;Chapter 7. A History of Poly A Sequences: From Formation to Factors to Function;298
10.1;I. Introduction;300
10.2;II. From Polymerases to Poly A(+) mRNA;303
10.3;III. Sequences Required for Polyadenylation;304
10.4;IV. The Biochemistry of Polyadenylation;309
10.5;V. Cleavage/Polyadenylation Proteins;319
10.6;VI. The Core Components of Cleavage/Polyadenylation;326
10.7;VII. Cloning, Sequencing, and Expressing the Core Proteins;333
10.8;VIII. Regulation of Polyadenylation;348
10.9;IX. Polyadenylation in Yeast;364
10.10;X. Polyadenylation in E. coli;377
10.11;XI. Polyadenylation in Vaccinia Virus;388
10.12;References;394
11;Chapter 8. A Growing Family of Guanine Nucleotide Exchange Factors Is Responsible for Activation of Ras-Family GTPases;404
11.1;I. Introduction;405
11.2;II. Regulation of in Vivo Ras-GTP Levels by Inhibition of GTPase-Activating Proteins ;407
11.3;III. Early Identification of Ras-Family GEFs;408
11.4;IV. GEF Structure and the Nucleotide Exchange Reaction;411
11.5;V. Dominant Inhibitory Ras Proteins Target GEFs;417
11.6;VI. Biological Assays for GEF Activity;419
11.7;VII. Ras-Family GEFs;420
11.8;VIII. GEFs and Disease;440
11.9;IX. Are There More GEFs in Our Future?;441
11.10;References;441
12;Chapter 9. Practical Approaches to Long Oligonucleotide-Based DNA Microarray: Lessons from Herpesviruses ;458
12.1;I. A Rationale for Developing DNA Microarrays for Herpesviruses;459
12.2;II. Herpes Simplex and Cytomegaloviruses„Two Herpesviruses That Share Features of Productive Infection but Differ Markedly in Patterns of Latency and Reactivation;460
12.3;III. Design Criteria for Herpesvirus DNA Microarrays;464
12.4;IV. The Construction and Validation of an Oligonucleotide-Based Hsv-1 DNA Microarray on Glass Slides ;468
12.5;V. Exemplary Applications;485
12.6;VI. Conclusions;499
12.7;References;500
13;Chapter 10. Sphingosine Kinases: A Novel Family of Lipid Kinases;506
13.1;I. Pleiotropic Functions of Sphingosine-1-Phosphate;507
13.2;II. Sphingosine Kinase and Sphingosine-1-Phosphate in Yeast and Plants;508
13.3;III. Cellular Functions of Sphingosine Kinase in Mammalian Cells;510
13.4;IV. How Is Sphingosine Kinase Activated?;511
13.5;V. Cloning of Mammalian Sphingosine Kinases;513
13.6;VI. Sphingosine Kinase Family;517
13.7;VII. Five Conserved Domains of the SPHK Superfamily;518
13.8;VIII. Phylogenetic Analysis of Sphingosine Kinases;521
13.9;IX. Concluding Remarks;521
13.10;References;522
14;Chapter 11. Mechanisms of EF-Tu, a Pioneer GTPase;526
14.1;I. Introduction;527
14.2;II. Structure–Function Relationships;537
14.3;III. EF-Ts as a Steric Chaperone for EF-Tu Folding;542
14.4;IV. EF-Tu as Target of Antibiotics;544
14.5;V. Specific Aspects of EF-Tu GTPase Activity;551
14.6;VI. Conclusions and Perspectives;555
14.7;References;556
15;Index;566



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.