E-Book, Englisch, Band Volume 72, 485 Seiten, Web PDF
Reihe: Progress in Nucleic Acid Research and Molecular Biology
Moldave Progress in Nucleic Acid Research and Molecular Biology
1. Auflage 2002
ISBN: 978-0-08-052267-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band Volume 72, 485 Seiten, Web PDF
Reihe: Progress in Nucleic Acid Research and Molecular Biology
ISBN: 978-0-08-052267-8
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Progress in Nucleic Acid Research and Molecular Biology provides a forum for discussion of new discoveries, approaches, and ideas in molecular biology. It contains contributions from leaders in their fields and abundant references.
Autoren/Hrsg.
Weitere Infos & Material
1;Cover;1
2;Contents;6
3;Some Articles Planned For Future Volume;10
4;Chapter 1. Viral Strategies of Translation Initiation: Ribosomal Shunt and Reinitiation ;12
4.1;I. Introduction;13
4.2;II. Main Initiation Strategies in Eukaryotes;15
4.3;III. Translation and Translation-Dependent Strategies of Pararetroviruses and Retroviruses ;18
4.4;IV. Shunting Mechanisms;23
4.5;V. Polycistronic Translation Strategies;32
4.6;VI. Outlook;39
4.7;References;40
5;Chapter 2. Initiation of Eukaryotic DNA Replication: Regulation and Mechanisms ;52
5.1;I. The Eukaryotic Cell Cycle;53
5.2;II. Factors Required for the Initiation of DNA Replication;64
5.3;III. The Organization of Replication-Initiation Factors on Chromatin;80
5.4;IV. Cell Cycle Control by Checkpoints;84
5.5;V. Outlook;91
5.6;References;92
6;Chapter 3. Deoxyribonucleotide Synthesis in Anaerobic Microorganisms: The Class III Ribonucleotide Reductase;106
6.1;I. Introduction;107
6.2;II. The Anaerobic Ribonucleotide Reductase: A Multicomponent System;110
6.3;III. The nrdD Protein: The Reductase Component;110
6.4;IV. The nrdG Protein: The Activase;125
6.5;V. Gene Organization and Regulation;131
6.6;VI. The Anaerobic RNR: The Link between the RNA World and the DNA World ;131
6.7;References;136
7;Chapter 4. Regulation of Pathways of mRNA Destabilization and Stabilization ;140
7.1;I. Life and Half-Life of mRNA;141
7.2;II. Degradation of mRNA through the General Pathway; Deadenylation-Dependent mRNA Decay;142
7.3;III. Special Pathways for Regulating the Stability of mRNAs;144
7.4;IV. Regulation of Vitellogenin and Albumin mRNA Stability;153
7.5;References;170
8;Chapter 5. Jasmonates and Octadecanoids: Signals in Plant Stress Responses and Development;176
8.1;I. Introduction;177
8.2;II. Occurrence of Jasmonates and Octadecanoids;179
8.3;III. Biosynthesis of Jasmonates and Octadecanoids;182
8.4;IV. Jasmonate-Induced Gene Expression;191
8.5;V. Jasmonates in Stress Response and Signal Transduction Pathways;196
8.6;VI. Jasmonates and Octadecanoids in Plant Development;207
8.7;VII. Concluding Remarks ;216
8.8;References;217
9;Chapter 6. The Ubiquitous Nature of RNA Chaperone Proteins;234
9.1;I. Introduction;235
9.2;II. RNA Structure and the Folding Problem;237
9.3;III. RNA-Binding Proteins;240
9.4;IV. Investigating the Biochemical Properties of Nucleic Acid Chaperone Proteins ;245
9.5;V. How Do RNA Chaperone Proteins Work?;257
9.6;VI. Conclusions and Future Prospects;269
9.7;References;274
10;Chapter 7. Mechanisms of Basal and Kinase-Inducible Transcription Activation by CREB ;280
10.1;I. Introduction;281
10.2;II. Distinct CREB Activation Domains Mediate Constitutive and Kinase-Inducible Transcription ;283
10.3;III. A Concerted Mechanism of Transcription Activation Involving Stimulation of Sequential Steps in Transcription Initiation by the CAD and P-KID;295
10.4;IV. Perspectives;309
10.5;References;310
11;Chapter 8. eIF4A: The Godfather of the DEAD Box Helicases;318
11.1;I. eIF4A: The Protein;319
11.2;II. The Biology of eIF4A;323
11.3;III. eIF4A: Biochemical Properties;324
11.4;IV. Influence of Other Proteins on eIF4A Function;330
11.5;V. Does Any of This Biochemistry Make Sense or Is There a Contradiction Somewhere? ;332
11.6;VI. The Role of the DEAD Box Sequences;334
11.7;VII. The Function of the Helicase Activity of eIF4A;335
11.8;VIII. eIF4A and the 80S Initiation Pathway;337
11.9;IX. Lessons Learned from eIF4A ;339
11.10;References;340
12;Chapter 9. CTD Phosphatase: Role in RNA Polymerase II Cycling and the Regulation of Transcript Elongation;344
12.1;I. Historical Overview;345
12.2;II. General Properties of CTD Phosphatase;348
12.3;III. RNAP II Recycling Mediated by CTD Phosphatase;357
12.4;IV. Involvement of CTD Phosphatase in the Regulation of Transcript Elongation;360
12.5;V. Perspectives and Future Directions;368
12.6;References;370
13;Chapter 10. Translational Control of Gene Expression: Role of IRESs and Consequences for Cell Transformation and Angiogenesis;378
13.1;I. Introduction;380
13.2;II. Background: Translation Initiation in Eukaryotes;382
13.3;III. The Murine Leukemia Virus: The Retroviral Genomic mRNA Codes for Two Gag–Pol Polyproteins from Two CUG and AUG Initiation Codons;389
13.4;IV. The FGF-2 mRNA: How Cap-Dependent and IRES-Dependent Translation of a Single mRNA Leads to Expression of Five Isoforms with Distinct Localizations and Functions ;394
13.5;V. VEGF mRNA: Two Distinct IRESs Control Alternative Initiation of the Translation of Two Isoforms;404
13.6;VI. C-myc mRNA: A Natural Multicistronic Messenger;407
13.7;VII. IRES-Dependent Translational Control: IRES Activity Enhancement in Transformed Cells ;409
13.8;VIII. IRES Tissue Specificity in Vivo;410
13.9;IX. FGF-2 Translational Silencing by Tumor Suppressor p53;411
13.10;X. Concluding Remarks;414
13.11;References;416
14;Chapter 11. Structure and Function of f29 Hexameric RNA That Drives ;426
14.1;I. Introduction;427
14.2;II. Approaches and Strategies for the Study of pRNA;430
14.3;III. Studies of pRNA Structure;441
14.4;IV. pRNA–Protein Interactions;456
14.5;V. Effect of Mono- and Divalent Cations on pRNA Dimer Formation, Procapsid Binding, and Viral Assembly (123, 138 );459
14.6;VI. Functions of pRNA;460
14.7;VII. Significance and Application of the Study of pRNA;468
14.8;VIII. Concluding Remarks;472
14.9;References;473
15;Index;484




