Moroz | The Common Extremalities in Biology and Physics | E-Book | www.sack.de
E-Book

E-Book, Englisch, 394 Seiten

Moroz The Common Extremalities in Biology and Physics

Maximum Energy Dissipation Principle in Chemistry, Biology, Physics and Evolution
2. Auflage 2011
ISBN: 978-0-12-385188-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Maximum Energy Dissipation Principle in Chemistry, Biology, Physics and Evolution

E-Book, Englisch, 394 Seiten

ISBN: 978-0-12-385188-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



The Common Extremalities in Biology and Physics is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. - The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspective - Discusses emerging fields and analysis - Provides examples

Moroz The Common Extremalities in Biology and Physics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;The Common Extremalities in Biology and Physics;4
3;Copyright Page;5
4;Contents;6
5;Preface;12
6;1 Extreme Energy Dissipation;16
6.1;1.1 Hierarchy of the Energy Transformation;16
6.1.1;1.1.1 Thermodynamics—A Science That Connects Physics and Biology;16
6.1.2;1.1.2 Hierarchy of the Processes and Parameters in Thermodynamics;17
6.1.3;1.1.3 Macroparameters: Energy and the Forms of Its Exchange;18
6.1.4;1.1.4 Macroparameters: Heat as a Nonmechanical Method to Change the Macrostate of Thermodynamic Systems;19
6.1.5;1.1.5 Macroparameters: Physical Work as a Pure Mechanical Way to Change Macroparameters;19
6.1.6;1.1.6 Macroparameters: The Energy Conservation Law;20
6.1.7;1.1.7 Macroparameters: Free Energy—Macroscopic Measure of Nonequilibrium;20
6.1.8;1.1.8 Macroparameters: Universal Fatality of the Processes—The Second Law of Thermodynamics and the Hierarchy of Energy;21
6.1.9;1.1.9 Macroparameters: Helmholtz Free Energy;22
6.1.10;1.1.10 Macroparameters: Enthalpy;22
6.1.11;1.1.11 Link from Macro- to Microparameters: Physical Entropy;23
6.1.12;1.1.12 Microparameters: Statistical Interpretation of Free Energy and Entropy;25
6.1.13;1.1.13 The Removal of Energetical Nonequilibrium and the Entropy Production;26
6.1.14;1.1.14 Dissipation in Chemical Transformations;27
6.1.15;1.1.15 Dissipation of Nonequilibrium in Open Systems;28
6.1.16;1.1.16 Energy Dissipation or Entropy Production—The Energy Picture Can Play a Role;29
6.1.17;1.1.17 Biological Hierarchy and Its Complexity;30
6.1.18;1.1.18 Some Conclusions;32
6.2;1.2 Extreme Properties of Energy Dissipation;33
6.2.1;1.2.1 Comparing Extreme Approaches;33
6.2.2;1.2.2 How Is the Elementary Variational Problem Solved?;38
6.2.3;1.2.3 Other Necessary Conditions for Local Minimum;39
6.2.4;1.2.4 Canonical Equations or Hamiltonian Formulation;40
6.2.5;1.2.5 Conclusions;41
6.3;1.3 Optimal-Control-Based Framework for Dissipative Chemical Kinetics;42
6.3.1;1.3.1 Optimal Control and Mechanics;42
6.3.2;1.3.2 Dynamic Optimal Control Formulation;44
6.3.3;1.3.3 More General Case;48
6.3.4;1.3.4 Optimal Control Interpretations;50
6.3.5;1.3.5 Pure Physical Example—Relaxation in an Ideal Resistor-Capacitor Circuit;53
6.4;1.4 Conclusions;54
6.5;References;55
7;2 Some General Optimal Control Problems Useful for Biokinetics;58
7.1;2.1 Extreme Dissipation, Optimal Control, and the Least Action Principle;58
7.1.1;2.1.1 Conservative Mechanics: Variational Formulation;58
7.1.2;2.1.2 On Optimal Control Formulation of Mechanics;61
7.1.3;2.1.3 Dissipation in Classical Mechanics;62
7.1.4;2.1.4 On an Alternative Way to Describe Biological and Chemical Dissipation;64
7.1.5;2.1.5 Comparing Closely the Linear Dissipative and Conservative Models;69
7.1.6;2.1.6 A More Biological Approximation of Penalty Potential;71
7.1.7;2.1.7 Simple Biological/Biochemical Example in Terms of Logarithmic Penalty;72
7.1.8;2.1.8 Penalty and Dissipative and Conservative Motion;75
7.2;2.2 Some One-Dimensional Examples of Biokinetics and Optimal Control;77
7.2.1;2.2.1 General One-Dimensional Optimal Control Model;77
7.2.2;2.2.2 “Additive” Control—Relevant to the Control by the Rate;79
7.2.3;2.2.3 “Multiplicative” Control—Relevant to the Control by the Rate Constant;85
7.2.4;2.2.4 General Case of the Cooperative Model;88
7.2.5;2.2.5 General Case of Cooperative Model: Partial Case h(x)=0, Variational Formulation;90
7.2.6;2.2.6 Multiplicative Control Model;91
7.2.7;2.2.7 Logistical Cooperative Model—Pure Variational Formulation;93
7.2.8;2.2.8 Some Other Cooperative Functions;96
7.2.9;2.2.9 On the Introduction of Control into the Logistic Model;100
7.2.10;2.2.10 On Dynamic Optimal Control Interpretations;104
7.3;2.3 General Multidimensional Examples of the Introduction of Optimal Control into Biokinetics;106
7.3.1;2.3.1 “Additive” Control;106
7.3.2;2.3.2 On Vector Formulation of Additive Control;112
7.3.3;2.3.3 Variational Formulation of Additive Control;114
7.3.4;2.3.4 “Multiplicative” Control;115
7.3.5;2.3.5 General Linear “Multiplicative” Control Case;117
7.3.6;2.3.6 An Interesting Two-Dimensional Case: “Cross-Penalty”;119
7.4;2.4 Conclusions;124
7.5;References;124
8;3 Variational and the Optimal Control Models in Biokinetics;126
8.1;3.1 Optimal Control Model of Binding Cooperativity;126
8.1.1;3.1.1 Importance of Low Molecular Binding and Its Cooperativity;126
8.1.2;3.1.2 Binding Kinetics, Cooperativity, and Its Representation;128
8.1.3;3.1.3 Dynamical Optimal Control Outline;131
8.1.4;3.1.4 Optimal Control Lagrange Method;135
8.1.5;3.1.5 Pure Variational Formulation;135
8.1.6;3.1.6 Some Conclusions;137
8.2;3.2 Enzyme Kinetics and Optimal Control;138
8.2.1;3.2.1 The Michaelis–Menten Model;138
8.2.2;3.2.2 General Optimal Control Approach to Michaelis–Menten Kinetics;140
8.2.3;3.2.3 Control by Means of Maximal Reaction Velocity Vmax;142
8.2.3.1;3.2.3.1 Optimal Control Outline;142
8.2.3.2;3.2.3.2 Pure Variational Formulation;143
8.2.4;3.2.4 Hamiltonian Formulation;145
8.2.4.1;3.2.4.1 Back to the Optimal Control Formulation in Terms of State and Control Variables;147
8.2.5;3.2.5 Control by the Michaelis Constant KM;153
8.2.5.1;3.2.5.1 Pure Variational Outline;155
8.2.5.2;3.2.5.2 Hamiltonian Framework;157
8.2.5.3;3.2.5.3 Optimal Control Outline;159
8.2.6;3.2.6 Simultaneous Optimal Control by the Vmax and the Michaelis Constant KM;164
8.2.7;3.2.7 The Link to Biochemical Mechanisms;166
8.3;3.3 Optimal Control, Variational Methods, and Multienzymatic Kinetics;170
8.3.1;3.3.1 Optimal Control Method in Modeling of Multienzymatic Chains;170
8.3.2;3.3.2 Optimal Control Introduction into the Bier-Teusink- Kholodenko- Westerhoff–Volkenstain Model of Glycolysis;171
8.3.3;3.3.3 Direct Optimal Control Outline;172
8.3.4;3.3.4 Variational Formulation;176
8.3.5;3.3.5 Statistical Method to Study the Robustness;179
8.3.5.1;3.3.5.1 Optimal Control by KM in the BTKW Model of Glycolysis;181
8.3.6;3.3.6 Optimal Control and Multienzyme Kinetics;185
8.4;3.4 Optimal Control in Hierarchical Biological Systems: Organism and Metabolic Hierarchy;188
8.5;References;193
9;4 Extreme Character of Evolution in Trophic Pyramid of Biological Systems and the Maximum Energy Dissipation/Least Action Principle;202
9.1;4.1 Acceleration of Dissipation in Molecular Processes is the Cause of Emergence of Trophic Pyramid of Biological Systems;202
9.1.1;4.1.1 Autocatalysis and Self-Reproduction;203
9.1.2;4.1.2 Competition: Result of Relationships Between Various Types of Autocatalysis in the System of Chemical Reactions;205
9.1.3;4.1.3 Molecular Symbiosis;207
9.1.4;4.1.4 Advanced Symbiosis: Autocatalytic Hypercycles;208
9.1.5;4.1.5 Effect of Feedback Extent;210
9.1.6;4.1.6 Role of Information Mapping: Hypercycles with the Translation;213
9.1.7;4.1.7 Phase Separation;218
9.1.8;4.1.8 Some Conclusions;219
9.2;4.2 Maximum Energy Dissipation Principle and Evolution of Biological Systems;222
9.2.1;4.2.1 Role of Energetical Perspective of Biological Evolution;222
9.2.2;4.2.2 General Characteristic of the Energy Dissipation in the Global Biological Trophic Pyramid;225
9.2.3;4.2.3 Biological Evolution and the Maximum Energy Dissipation Principle;228
9.2.4;4.2.4 Cooperations of Macromolecules—From Molecular Hypercycles to Protobiocells;228
9.2.5;4.2.5 Bacterial Social Behavior;233
9.2.6;4.2.6 Eukaryotic Cells and Collective/Social Behavior;234
9.2.7;4.2.7 Organismic Level—From Acellular to Multicellular Biosystems;234
9.2.8;4.2.8 Symbiosis Is Fundamental for Developing Essentially New Dissipative Manners of Metabolism, Which Use Qualitatively New Free Energy Resources;236
9.2.9;4.2.9 Organizational Levels of the Global Biological Dissipative Pyramid;237
9.2.10;4.2.10 Limitations in the Scale of Free Energy Dissipation at Every Level of Bioorganization;241
9.2.11;4.2.11 Limitation in the Informational Mapping/Cognition;243
9.2.11.1;4.2.11.1 Informational Processing at the Level of Biosocial Species;247
9.2.11.2;4.2.11.2 Communication Languages in Social Multicellular Organisms: Dance Communications;247
9.2.12;4.2.12 Conclusions;253
9.3;4.3 The Pinnacle of Trophic Pyramid of Biological Systems—Symbiosis of Biological and Nonbiological Accelerating Loops: Technological Accelerating Loop;255
9.3.1;4.3.1 General Approach;255
9.3.2;4.3.2 Biological Component: Data on the Population Growth;258
9.3.3;4.3.3 Self-Reproductive-Like Growth of the Industrial (Nonbiological) Component;258
9.3.4;4.3.4 Symbiotic Accelerative Cycle of Biological and Nonbiological Things;263
9.3.5;4.3.5 More “Economic” Model: Four-Level Scheme of Level Interaction;267
9.3.6;4.3.6 Economic Interpretation of Optimal Control and the Biological Analogies;275
9.3.7;4.3.7 On the Interpretation of Static Optimization;276
9.3.8;4.3.8 Economic Interpretation of Dynamic Optimization;280
9.3.9;4.3.9 The Limitations in Purely Biological and Biosocial Parts of the Global Trophic Pyramid;283
9.3.10;4.3.10 Limitation in the Sociobiological Form of Information Mapping;288
9.3.11;4.3.11 Possible Postsocial Stage of Development of Dissipative Systems;292
9.3.12;4.3.12 Conclusions;293
9.4;References;295
10;5 Phenomenological Cost and Penalty Interpretation of the Lagrange Formalism in Physics;302
10.1;5.1 Fusing Mechanics and Optimal Control;302
10.1.1;5.1.1 Introduction;302
10.1.2;5.1.2 Mechanical Degrees of Freedom;302
10.1.3;5.1.3 Measurement Differences;303
10.1.4;5.1.4 The Penalty Example for a One-Dimensional Harmonic Oscillator;314
10.1.5;5.1.5 Dissipative, More Biological Analogue;315
10.1.6;5.1.6 Conclusions;317
10.2;5.2 Finiteness of the Propagation Velocity of Physical Interactions and Physical Penalty;318
10.3;5.3 Phenomenology of the Nonmechanical Penalty for Free Fields;324
10.3.1;5.3.1 Scalar Field;327
10.3.2;5.3.2 Complex Scalar Field: Charged Scalar Particles;328
10.3.3;5.3.3 Vector Field;330
10.3.4;5.3.4 Electromagnetic Field;331
10.3.5;5.3.5 Spinor Field;332
10.3.6;5.3.6 Massless Spinor Field;335
10.3.7;5.3.7 Penalty and Gravity;337
10.3.8;5.3.8 Einstein Equations;339
10.3.9;5.3.9 Some Final Remarks;340
10.4;5.4 Internal Symmetry of the Physical Penalty;342
10.4.1;5.4.1 Symmetry Breaking;349
10.4.2;5.4.2 Standard Model Illustrating the Physical Penalty;355
10.4.3;5.4.3 Grand Symmetry of the Physical Penalty;357
10.4.4;5.4.4 Supersymmetry of the Physical Penalty;358
10.4.5;5.4.5 Noncompensation of the Internal Penalty;359
10.5;5.5 Physical Interactions and Penalty;361
10.6;5.6 Physical Evolution in Light of Maximum Energy Dissipation Principle;369
10.6.1;5.6.1 Before the Epoch of Space-Time and Substance–Energy Separation;372
10.6.2;5.6.2 First Epoch: Epoch of the Barions Origin, 10-15GeV–2000GeV;372
10.6.3;5.6.3 Second Epoch: Epoch of Intermediate Vector Bosons, Temperature Drops from 2000 down to 50GeV;373
10.6.4;5.6.4 Third Epoch: Hadron Epoch;373
10.6.5;5.6.5 Fourth Epoch: Photon–Lepton Epoch;373
10.7;5.7 Conclusion: Physical Phenomena from the Point of View of Biological Ones;376
10.8;References;378
11;6 Conceptual Aspects of the Common Extrema in Biology and Physics;380
11.1;6.1 Self-Sufficiency of Extreme Transformations;380
11.1.1;6.1.1 Nonequilibrium/Instability;380
11.1.2;6.1.2 Motion Is a Striving Toward Stability;381
11.1.3;6.1.3 Extremeness;381
11.1.4;6.1.4 Ordered Way/Regularity;381
11.1.5;6.1.5 New Instability—The Result of the Ordered, Structured Process of the Elimination of Extreme Instability;382
11.2;6.2 Intensive and Extensive Property of Displaying of Material Instability;383
11.2.1;6.2.1 Energy in the Penalty Sense;385
11.2.2;6.2.2 Time in the Penalty Sense;385
11.3;6.3 Natural and Biotic Things—Lethal Gap or Irrational Compromise;387
11.3.1;6.3.1 “Continuous” Model—The Irrational Compromise;387
11.3.2;6.3.2 “Alternative” Model;389
12;Main Conclusions and Remaining Questions;392



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.