E-Book, Englisch, 492 Seiten
Moseley / Garche Electrochemical Energy Storage for Renewable Sources and Grid Balancing
1. Auflage 2014
ISBN: 978-0-444-62610-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 492 Seiten
ISBN: 978-0-444-62610-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen is the only solution for long-term storage systems to provide energy during extended periods of low wind speeds or solar insolation. Future electricity grid design has to include storage systems as a major component for grid stability and for security of supply. The technology of systems designed to achieve this regulation of the supply of renewable energy, and a survey of the markets that they will serve, is the subject of this book. It includes economic aspects to guide the development of technology in the right direction. - Provides state-of-the-art information on all of the storage systems together with an assessment of competing technologies - Features detailed technical, economic and environmental impact information of different storage systems - Contains information about the challenges that must be faced for batteries and hydrogen-storage to be used in conjunction with a fluctuating (renewable energy) power supply
Autoren/Hrsg.
Weitere Infos & Material
1;Front
Cover;1
2;Electrochemical Energy Storage for Renewable Sources and
Grid Balancing;4
3;Copyright;5
4;Contents;6
5;Contributors;14
6;Foreword by Dr. Derek Pooley;16
7;Preface;18
8;Part I -
Introduction – Renewable Energies, Markets and Storage Technology Classification;20
8.1;Chapter 1 - The Exploitation of Renewable Sources of Energy for Power Generation;22
8.1.1;1.1 ENERGY AND SOCIETY;22
8.1.2;1.2 ENERGY AND ELECTRICITY;23
8.1.3;1.3 THE ROLE OF ENERGY STORAGE;26
8.1.4;1.4 INTERNATIONAL COMPARISONS;27
8.1.5;1.5 TYPES AND APPLICATIONS OF ENERGY STORAGE;28
8.1.6;1.6 COMMERCIALIZATION OF ENERGY STORAGE;30
8.1.7;REFERENCES;30
8.2;Chapter 2 - Classification of Storage Systems;32
8.2.1;2.1 INTRODUCTION AND MOTIVATION;32
8.2.2;2.2 FLEXIBILITY OPTIONS;33
8.2.3;2.3 DIFFERENT TYPES OF CLASSIFICATIONS;33
8.2.4;2.4 CONCLUSION;40
8.3;Chapter 3 - Challenges of Power Systems;42
8.3.1;3.1 POWER SYSTEM REQUIREMENTS;42
8.3.2;3.2 THE ROLE OF STORAGE SYSTEMS FOR FUTURE CHALLENGES IN THE ELECTRICAL NETWORK;43
8.3.3;3.3 DEMAND-SIDE MANAGEMENT AND OTHER ALTERNATIVES TO STORAGE SYSTEMS;45
8.3.4;3.4 SUPPLY OF RESERVE POWER;48
8.3.5;REFERENCES;51
8.4;Chapter 4 - Applications and Markets for Grid-Connected Storage Systems;52
8.4.1;4.1 INTRODUCTION;52
8.4.2;4.2 FREQUENCY CONTROL;54
8.4.3;4.3 SELF-SUPPLY;61
8.4.4;4.4 UNINTERRUPTIBLE POWER SUPPLY;65
8.4.5;4.5 ARBITRAGE/ENERGY TRADING;67
8.4.6;4.6 LOAD LEVELING/PEAK SHAVING;69
8.4.7;4.7 OTHER MARKETS AND APPLICATIONS;69
8.4.8;REFERENCES;71
8.5;Chapter 5 - Existing Markets for Storage Systems in Off-Grid Applications;72
8.5.1;5.1 DIFFERENT SOURCES OF RENEWABLE ENERGY;72
8.5.2;5.2 IMPACT OF THE USER;73
8.6;Chapter 6 - Review of the Need for Storage Capacity Depending on the Share of Renewable Energies;80
8.6.1;6.1 INTRODUCTORY REMARKS;80
8.6.2;6.2 SELECTED STUDIES WITH GERMAN FOCUS;82
8.6.3;6.3 SELECTED STUDIES WITH EUROPEAN FOCUS;90
8.6.4;6.4 DISCUSSION OF STUDY RESULTS;96
8.6.5;6.5 CONCLUSIONS;103
8.6.6;ABBREVIATIONS;104
8.6.7;REFERENCES;104
9;Part II -
Storage Technologies;106
9.1;Chapter 7 - Overview of Nonelectrochemical Storage Technologies;108
9.1.1;7.1 INTRODUCTION;108
9.1.2;7.2 ‘ELECTRICAL’ STORAGE SYSTEMS;109
9.1.3;7.3 ‘MECHANICAL’ STORAGE SYSTEMS;111
9.1.4;7.4 ‘THERMOELECTRIC’ ENERGY STORAGE;118
9.1.5;7.5 STORAGE TECHNOLOGIES AT THE CONCEPT STAGE;119
9.1.6;7.6 SUMMARY;120
9.1.7;REFERENCES;121
9.2;Chapter 8 - Hydrogen Production from Renewable Energies—Electrolyzer Technologies;122
9.2.1;8.1 INTRODUCTION;122
9.2.2;8.2 FUNDAMENTALS OF WATER ELECTROLYSIS;124
9.2.3;8.3 ALKALINE WATER ELECTROLYSIS;128
9.2.4;8.4 PEM WATER ELECTROLYSIS;133
9.2.5;8.5 HIGH-TEMPERATURE WATER ELECTROLYSIS;139
9.2.6;8.6 MANUFACTURERS AND DEVELOPERS OF ELECTROLYZERS;143
9.2.7;8.7 COST ISSUES;144
9.2.8;8.8 SUMMARY;145
9.2.9;ACRONYMS/ABBREVIATIONS;145
9.2.10;REFERENCES;146
9.3;Chapter 9 - Large-Scale Hydrogen Energy Storage;148
9.3.1;9.1 INTRODUCTION;148
9.3.2;9.2 ELECTROLYZER;150
9.3.3;9.3 HYDROGEN GAS STORAGE;151
9.3.4;9.4 RECONVERSION OF THE HYDROGEN INTO ELECTRICITY;155
9.3.5;9.5 COST ISSUES: LEVELIZED COST OF ENERGY;158
9.3.6;9.6 ACTUAL STATUS AND OUTLOOK;160
9.3.7;ACKNOWLEDGMENT;161
9.3.8;REFERENCES;161
9.4;Chapter 10 - Hydrogen Conversion into Electricity and Thermal Energy by Fuel Cells: Use of H2-Systems and Batteries;162
9.4.1;10.1 INTRODUCTION;162
9.4.2;10.2 ELECTROCHEMICAL POWER SOURCES;163
9.4.3;10.3 HYDROGEN-BASED ENERGY STORAGE SYSTEMS;164
9.4.4;10.4 ENERGY FLOW IN THE HYDROGEN ENERGY STORAGE SYSTEM;168
9.4.5;10.5 DEMONSTRATION PROJECTS;170
9.4.6;10.6 CASE STUDY: A GENERAL ENERGY STORAGE SYSTEM LAYOUT FOR MAXIMIZED USE OF RENEWABLE ENERGIES;171
9.4.7;10.7 CASE STUDY OF A PV-BASED SYSTEM MINIMIZING GRID INTERACTION;172
9.4.8;10.8 CONCLUSIONS;174
9.4.9;10.9 SUMMARY;176
9.4.10;REFERENCES;176
9.5;Chapter 11 - PEM Electrolyzers and PEM Regenerative Fuel Cells Industrial View;178
9.5.1;11.1 INTRODUCTION;178
9.5.2;11.2 GENERAL TECHNOLOGY DESCRIPTION;179
9.5.3;11.3 ELECTRICAL PERFORMANCE AND LIFETIME;188
9.5.4;11.4 NECESSARY ACCESSORIES;192
9.5.5;11.5 ENVIRONMENTAL ISSUES;193
9.5.6;11.6 COST ISSUES;194
9.5.7;11.7 ACTUAL STATUS;197
9.5.8;11.8 SUMMARY;199
9.5.9;REFERENCES;199
9.6;Chapter 12 - Energy Carriers Made from Hydrogen;202
9.6.1;12.1 INTRODUCTION;202
9.6.2;12.2 HYDROGEN PRODUCTION AND DISTRIBUTION;204
9.6.3;12.3 METHANE;207
9.6.4;12.4 METHANOL;209
9.6.5;12.5 DIMETHYL ETHER;210
9.6.6;12.6 FISCHER–TROPSCH SYNFUELS;211
9.6.7;12.7 HIGHER ALCOHOLS AND ETHERS;214
9.6.8;12.8 AMMONIA;215
9.6.9;12.9 CONCLUSION AND OUTLOOK;216
9.6.10;ABBREVIATIONS;217
9.6.11;REFERENCES;217
9.7;Chapter 13 - Energy Storage with Lead–Acid Batteries;220
9.7.1;13.1 FUNDAMENTALS OF LEAD–ACID TECHNOLOGY;220
9.7.2;13.2 ELECTRICAL PERFORMANCE AND AGING;226
9.7.3;13.3 BATTERY MANAGEMENT;229
9.7.4;13.4 ENVIRONMENTAL ISSUES;231
9.7.5;13.5 COST ISSUES;232
9.7.6;13.6 PAST/PRESENT APPLICATIONS, ACTIVITIES AND MARKETS;232
9.7.7;ACRONYMS AND INITIALISMS;240
9.7.8;SYMBOLS;241
9.7.9;FURTHER READING;241
9.8;Chapter 14 - Nickel–Cadmium and Nickel–Metal Hydride Battery Energy Storage;242
9.8.1;14.1 INTRODUCTION;242
9.8.2;14.2 NI-CD AND NI-MH TECHNOLOGIES;243
9.8.3;14.3 ELECTRICAL PERFORMANCE AND LIFETIME AND AGING ASPECTS;255
9.8.4;14.4 ENVIRONMENTAL CONSIDERATIONS;260
9.8.5;14.5 ACTUAL STATUS;262
9.8.6;14.6 CONCLUSION;269
9.8.7;FURTHER READING;269
9.9;Chapter 15 - High-Temperature Sodium Batteries for Energy Storage;272
9.9.1;15.1 FUNDAMENTALS OF HIGH-TEMPERATURE SODIUM BATTERY TECHNOLOGY;272
9.9.2;15.2 ELECTRICAL PERFORMANCE AND AGING;277
9.9.3;15.3 BATTERY MANAGEMENT;280
9.9.4;15.4 ENVIRONMENTAL ISSUES;281
9.9.5;15.5 COST ISSUES;283
9.9.6;15.6 CURRENT STATUS;284
9.9.7;15.7 CONCLUDING REMARKS;286
9.9.8;ACRONYMS AND INITIALISMS;286
9.9.9;SYMBOLS AND UNITS;286
9.9.10;REFERENCES;286
9.9.11;FURTHER READING;287
9.10;Chapter 16 - Lithium Battery Energy Storage: State of the Art Including Lithium–Air and Lithium–Sulfur Systems;288
9.10.1;16.1 ENERGY STORAGE IN LITHIUM BATTERIES;289
9.10.2;16.2 ELECTRICAL PERFORMANCE, LIFETIME, AND AGING;309
9.10.3;16.3 ACCESSORIES;312
9.10.4;16.4 ENVIRONMENTAL ISSUES;317
9.10.5;16.5 COST ISSUES;318
9.10.6;16.6 STATE OF THE ART;320
9.10.7;ABBREVIATIONS AND SYMBOLS;325
9.10.8;REFERENCES;325
9.11;Chapter 17 - Redox Flow Batteries;328
9.11.1;17.1 INTRODUCTION;328
9.11.2;17.2 FLOW BATTERY CHEMISTRIES;329
9.11.3;17.3 COST CONSIDERATIONS;354
9.11.4;17.4 SUMMARY AND CONCLUSIONS;354
9.11.5;REFERENCES;355
9.11.6;FURTHER READINGS;355
9.12;Chapter 18 - Metal Storage/Metal Air (Zn, Fe, Al, Mg);356
9.12.1;18.1 GENERAL TECHNICAL DESCRIPTION OF THE TECHNOLOGY;356
9.12.2;18.2 ELECTRICAL PERFORMANCE, LIFETIME, AND AGING ASPECTS;359
9.12.3;18.3 NECESSARY ACCESSORIES;361
9.12.4;18.4 ENVIRONMENTAL ISSUES;362
9.12.5;18.5 COST ISSUES (TODAY, IN 5YEARS, AND IN 10YEARS);362
9.12.6;18.6 ACTUAL STATUS;363
9.12.7;FURTHER READING;363
9.13;Chapter 19 - Electrochemical Double-layer Capacitors;364
9.13.1;19.1 TECHNICAL DESCRIPTION;365
9.13.2;19.2 ELECTRICAL PERFORMANCE, LIFETIME, AND AGING ASPECTS;401
9.13.3;19.3 ACCESSORIES;415
9.13.4;19.4 ENVIRONMENTAL ISSUES;416
9.13.5;19.5 COST ISSUES;417
9.13.6;19.6 ACTUAL STATUS;418
9.13.7;SYMBOLS AND UNITS;424
9.13.8;ABBREVIATIONS AND ACRONYMS;425
9.13.9;FURTHER READING;425
9.13.10;FURTHER READING;425
9.13.11;FURTHER READING;425
10;Part III -
System Aspects;428
10.1;Chapter 20 - Battery Management and Battery Diagnostics;430
10.1.1;20.1 INTRODUCTION;430
10.1.2;20.2 BATTERY PARAMETERS—MONITORING AND CONTROL;431
10.1.3;20.3 BATTERY MANAGEMENT OF ELECTROCHEMICAL ENERGY STORAGE SYSTEMS;437
10.1.4;20.4 BATTERY DIAGNOSTICS;448
10.1.5;20.5 IMPLEMENTATION OF BATTERY MANAGEMENT AND BATTERY DIAGNOSTICS;451
10.1.6;20.6 CONCLUSIONS;453
10.1.7;REFERENCES;453
10.2;Chapter 21 - Life Cycle Cost Calculation and Comparison for Different Reference Cases and Market Segments;456
10.2.1;21.1 MOTIVATION;456
10.2.2;21.2 METHODOLOGY;457
10.2.3;21.3 REFERENCE CASES;463
10.2.4;21.4 EXAMPLE RESULTS;464
10.2.5;21.5 SENSITIVITY ANALYSIS;469
10.3;Chapter 22 - ‘Double Use’ of Storage Systems;472
10.3.1;22.1 INTRODUCTION;472
10.3.2;22.2 UNINTERRUPTIBLE POWER SUPPLY SYSTEMS;472
10.3.3;22.3 ELECTRIC VEHICLE BATTERIES—VEHICLE TO GRID;473
10.3.4;22.4 PHOTOVOLTAIC HOME STORAGE;478
10.3.5;22.5 SECOND LIFE OF VEHICLE BATTERIES;480
10.3.6;REFERENCES;482
11;Index;484
Classification of Storage Systems
Abstract
There are numerous storage technologies and flexibility options to serve the balancing between demand and supply. Even for 100% renewable energy scenarios a sufficient range of technologies is available to solve the storage demands.
Nevertheless, it is necessary to classify the different storage technologies and flexibility options into different categories. This is important especially from an application's point of view, because not any storage technology can be applied in any application. The systematic classifications presented in this chapter help to compare only those technologies for a certain application, grid level and service demand, which are really of relevance for a given problem and which can compete in the same market.
Keywords
Classification; Flexibility options; Negative control power; Positive control power; Storage systems
Chapter Outline
2.1 Introduction and Motivation 13
2.3 Different Types of Classifications 14
2.3.1 Classification According to the Needs of the Grid 15
2.3.1.1 ‘Electricity to Electricity’ Storage Technologies 15
2.3.1.2 ‘Electricity to Anything’ Flexibility Options 15
2.3.1.3 ‘Anything to Electricity’ Flexibility Options 16
2.3.2 Classification According to the Supply Time of the Storage System 16
2.3.3 Classification as Single-purpose and Double-use Storage Systems 18
2.3.4 Classification According to the Position in the Grid and the Service Offers 18