Mucalo | Hydroxyapatite (HAp) for Biomedical Applications | E-Book | www.sack.de
E-Book

E-Book, Englisch, 404 Seiten

Reihe: Woodhead Publishing Series in Biomaterials

Mucalo Hydroxyapatite (HAp) for Biomedical Applications


1. Auflage 2015
ISBN: 978-1-78242-041-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 404 Seiten

Reihe: Woodhead Publishing Series in Biomaterials

ISBN: 978-1-78242-041-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Hydroxyapatite in the form of hydroxycarbonate apatite is the principal mineral component of bone tissue in mammals. In Bioceramics, it is classed as a bioactive material, which means bone tissue grows directly on it when placed in apposition without intervening fibrous tissue. Hydroxyapatite is hence commonly used as bone grafts, fillers and as coatings for metal implants. This important book provides an overview of the most recent research and developments involving hydroxyapatite as a key material in medicine and its application. - Reviews the important properties of hydroxyapatite as a biomaterial - Considers a range of specific forms of the material and their advantages - Reviews a range of specific medical applications for this important material

Mucalo Hydroxyapatite (HAp) for Biomedical Applications jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Hydroxyapatite (HAp) for Biomedical Applications;4
3;Copyright;5
4;Contents;6
5;List of contributors;12
6;Woodhead Publishing Series in Biomaterials;14
7;Preface;18
8;Part One: Properties and biological response to hydroxyapatite for medical applications;22
8.1;Chapter 1: Structure and properties of hydroxyapatite for biomedical applications;24
8.1.1;1.1. Introduction: key properties;24
8.1.2;1.2. Strengths/weaknesses;26
8.1.2.1;1.2.1. Weaknesses: low mechanical properties;26
8.1.2.2;1.2.2. Weaknesses: low degradation rate;27
8.1.2.3;1.2.3. Weaknesses: lack of osteoinductivity;28
8.1.2.4;1.2.4. Weaknesses: lack of targeting and labeling;30
8.1.3;1.3. Examples of applications;31
8.1.3.1;1.3.1. Application for hard tissue repairs;31
8.1.3.2;1.3.2. Application as bone tissue engineering scaffolds;32
8.1.3.3;1.3.3. Application for soft tissue repairs;33
8.1.3.4;1.3.4. Application as drug/gene/protein carriers;33
8.1.3.5;1.3.5. Applications in bioimaging and diagnosis;34
8.1.3.6;1.3.6. Rapid fractionation of proteins, nucleic acids, and antibodies;34
8.1.4;1.4. Future trends;35
8.2;Chapter 2: Adhesion of hydroxyapatite on titanium medical implants;42
8.2.1;2.1. Introduction;42
8.2.2;2.2. Hydroxyapatite;43
8.2.3;2.3. Anodic oxidation (anodizing);45
8.2.3.1;2.3.1. The titanium anodizing process;45
8.2.3.2;2.3.2. Formation mechanism of anodic oxide films;46
8.2.4;2.4. Coating techniques and adhesion to HAp;47
8.2.4.1;2.4.1. Plasma spraying;47
8.2.4.2;2.4.2. Sol-gel deposition;49
8.2.4.3;2.4.3. Pulsed laser deposition;52
8.2.4.4;2.4.4. Chemical vapor deposition;53
8.2.4.5;2.4.5. Aerosol deposition;53
8.2.4.6;2.4.6. Electrodeposition;54
8.2.5;2.5. Thin film adhesion properties;55
8.2.5.1;2.5.1. Mechanical theory;55
8.2.5.2;2.5.2. Chemical bond theory;56
8.2.5.3;2.5.3. Electrostatic theory;56
8.2.5.4;2.5.4. Diffusion theory;56
8.2.5.5;2.5.5. Mechanics of adhesion;56
8.2.5.6;2.5.6. Wettability and surface energetics;57
8.2.5.7;2.5.7. Interfacial thermodynamics;57
8.2.6;2.6. Adhesion measurement techniques;57
8.2.6.1;2.6.1. Tensile pull-off and shear testing;58
8.2.6.2;2.6.2. Scratch testing;59
8.2.6.3;2.6.3. Bend delamination testing;60
8.2.6.4;2.6.4. In situ microtensile testing;61
8.2.6.5;2.6.5. Indentation;62
8.2.7;2.7. Conclusion;65
8.3;Chapter 3: Biological responses to hydroxyapatite;74
8.3.1;3.1. Introduction;74
8.3.1.1;3.1.1. Key principles, properties of the material;74
8.3.2;3.2. How cellular responses to HAp are studied;75
8.3.2.1;3.2.1. Choice of cells;75
8.3.2.1.1;3.2.1.1. Primary osteoblasts;75
8.3.2.1.2;3.2.1.2. Osteoblast cell lines;75
8.3.2.2;3.2.2. Investigating osteoblastic responses;77
8.3.2.3;3.2.3. Investigating osteoclastic responses;79
8.3.2.4;3.2.4. Use of co-cultures;80
8.3.2.5;3.2.5. Cell-free tests;80
8.3.3;3.3. Development of the bone-HAp interface;80
8.3.3.1;3.3.1. Sequence of events in bone healing;80
8.3.3.2;3.3.2. Ionic and biomolecular exchanges at the bone-implant interface;81
8.3.3.3;3.3.3. Protein adsorption;82
8.3.4;3.4. Cell attachment;83
8.3.4.1;3.4.1. Influence of surface texture in relation to protein adsorption and cell adhesion;83
8.3.4.2;3.4.2. Influence of micronscale surface roughness;84
8.3.4.3;3.4.3. Influence of nanoscale surface roughness;85
8.3.5;3.5. Resorption and remodeling;86
8.3.6;3.6. Inflammatory response to HAp particulates;88
8.3.7;3.7. Influence of surface topography;90
8.3.7.1;3.7.1. Grooves and contact guidance;90
8.3.8;3.8. Osteoinduction;91
8.3.9;3.9. Influence of ion substitutions;92
8.3.9.1;3.9.1. Sodium, chloride, and carbonate ions;93
8.3.9.2;3.9.2. Magnesium;93
8.3.9.3;3.9.3. Manganese;93
8.3.9.4;3.9.4. Strontium;93
8.3.9.5;3.9.5. Fluoride;94
8.3.9.6;3.9.6. Silicon;94
8.3.9.7;3.9.7. Silver;94
8.3.10;3.10. Response to electrically charged HAp;94
8.3.11;3.11. Conclusion and future prospects;95
8.4;Chapter 4: In vitro degradation behavior of hydroxyapatite;106
8.4.1;4.1. Introduction: background;106
8.4.2;4.2. In vitro evaluation techniques for biodegradability of calcium phosphate-based (Ca-P) ceramic materials;109
8.4.3;4.3. Models representing dissolution kinetics;110
8.4.4;4.4. Models representing dissolution profiles;111
8.4.4.1;4.4.1. Homogeneous model;111
8.4.4.2;4.4.2. Weibull model;111
8.4.4.3;4.4.3. Hixson-Crowell model;112
8.4.5;4.5. Applications;113
8.4.6;4.6. Effects of heterogeneous structure;118
8.4.7;4.7. Conclusions;122
8.5;Chapter 5: Zinc-substituted hydroxyapatite for the inhibition of osteoporosis;128
8.5.1;5.1. Introduction;128
8.5.2;5.2. Zinc;129
8.5.3;5.3. Zinc and the skeleton;129
8.5.4;5.4. Zinc substituted hydroxyapatite;131
8.5.4.1;5.4.1. Theoretical substitution of zinc into hydroxyapatite;132
8.5.4.2;5.4.2. Physical substitution of zinc substituted hydroxyapatite;132
8.5.4.3;5.4.3. Biological response to zinc substituted hydroxyapatite;135
8.5.5;5.5. Osteoporosis;137
8.5.5.1;5.5.1. Disease: cause and effect;138
8.5.5.2;5.5.2. Osteoporosis treatment;139
8.5.5.3;5.5.3. Zinc substituted hydroxyapatite and osteoporosis;141
8.5.6;5.6. Conclusions and future trends;141
9;Part Two: Biomedical applications of hydroxyapatite;148
9.1;Chapter 6: Ultra-thin hydroxyapatite sheets for dental applications;150
9.1.1;6.1. Introduction;150
9.1.2;6.2. Flexible HAp sheet;151
9.1.3;6.3. Adhesion of sheet to dentin;155
9.1.4;6.4. Dental applications;156
9.1.4.1;6.4.1. Repair of enamel;156
9.1.4.2;6.4.2. Shielding of dentinal tubules;159
9.1.4.3;6.4.3. Cosmetic dentistry application;160
9.1.5;6.5. Summary;161
9.2;Chapter 7: Hydroxyapatite coatings for metallic implants;164
9.2.1;7.1. Introduction;164
9.2.2;7.2. Advantages of HAp coating for biomedical applications;166
9.2.3;7.3. Processing of HAp coatings;168
9.2.4;7.4. Interactions of HAp coating with the host tissue;173
9.2.5;7.5. Cemented and cementless total hip arthroplasty (THA);174
9.2.6;7.6. Effectiveness of HAp coating for orthopedic applications;174
9.2.7;7.7. Current challenges and future directions;175
9.3;Chapter 8: Multifunctional bioactive nanostructured films;180
9.3.1;8.1. Introduction;180
9.3.2;8.2. Films for implants;181
9.3.2.1;8.2.1. Titanium nitride films;181
9.3.2.2;8.2.2. Diamond-like carbon and CN films;181
9.3.2.3;8.2.3. Calcium phosphate-based films;182
9.3.2.4;8.2.4. Titanium dioxide films;183
9.3.2.5;8.2.5. ZrO2 films;183
9.3.2.6;8.2.6. SiO2 films;184
9.3.3;8.3. Multicomponent bioactive nanostructured films;184
9.3.3.1;8.3.1. Composite and functionally graded targets for MuBiNaFs deposition;184
9.3.3.2;8.3.2. Metallic implants;186
9.3.3.2.1;8.3.2.1. First generation of MuBiNaFs;186
9.3.3.2.2;8.3.2.2. Second generation of MuBiNaFs;186
9.3.3.2.3;8.3.2.3. Third generation of MuBiNaFs;187
9.3.3.3;8.3.3. Polymer implants;190
9.3.3.4;8.3.4. Decellularized donors bone;193
9.3.4;8.4. Mechanical properties of MuBiNaFs;195
9.3.5;8.5. Surface engineering for biotribological applications;197
9.3.6;8.6. Surface engineering to control topography, roughness, and blind porosity;198
9.3.7;8.7. Final remarks and future approaches;200
9.4;Chapter 9: Porous hydroxyapatite for drug delivery;210
9.4.1;9.1. Introduction;210
9.4.2;9.2. Applications and requirements of porous HAp for drug delivery;210
9.4.3;9.3. Preparation and characterization of porous HAp bioceramics for drug delivery;212
9.4.4;9.4. Preparation strategies of drug delivery systems (DDS) based on CaPs;216
9.4.4.1;9.4.1. Impact of carrier solubility on the drug release;216
9.4.4.2;9.4.2. DDS preparation strategies based on sorption;219
9.4.4.3;9.4.3. DDS preparation strategies based on physical/mechanical aspects;219
9.4.4.4;9.4.4. DDS preparation strategies based on chemical linking;222
9.4.5;9.5. Drug release kinetics and application prospective;223
9.4.6;9.6. Summary and future trends;225
9.5;Chapter 10: Collagen-hydroxyapatite composite scaffolds for tissue engineering;232
9.5.1;10.1. Introduction;232
9.5.2;10.2. Bone as a composite of collagen and hydroxyapatite;233
9.5.3;10.3. Fabrication of a collagen-hydroxyapatite composite scaffold;235
9.5.3.1;10.3.1. Direct ``mixing´´ fabrication;236
9.5.3.2;10.3.2. Biomimetic mineralization of collagen matrix;238
9.5.3.3;10.3.3. Rapid prototyping integrated scaffold fabrication;245
9.5.4;10.4. Applications of collagen-hydroxyapatite composite in musculoskeletal tissue engineering;248
9.5.5;10.5. Perspectives in collagen-hydroxyapatite development;248
9.6;Chapter 11: Synthetic hydroxyapatite for tissue engineering applications;256
9.6.1;11.1. Introduction;256
9.6.1.1;11.1.1. Materials and structural requirements in tissue engineering;257
9.6.1.2;11.1.2. Hydroxyapatite for bone repair and replacement;258
9.6.2;11.2. Design considerations for synthetic HAp scaffolds;258
9.6.2.1;11.2.1. Pore morphology and interconnectivity;258
9.6.2.2;11.2.2. Microporosity and surface topography;259
9.6.2.3;11.2.3. Mechanical requirements;260
9.6.2.4;11.2.4. Chemistry;261
9.6.3;11.3. Production of porous HAp scaffolds;262
9.6.3.1;11.3.1. HAp synthesis as a precursor for scaffold production;263
9.6.3.2;11.3.2. Partial sintering;264
9.6.3.3;11.3.3. Replica method;264
9.6.3.4;11.3.4. Use of a sacrificial template;265
9.6.3.5;11.3.5. Direct foaming methods;266
9.6.3.6;11.3.6. Solid-free forming;267
9.6.4;11.4. Biological response of HAp scaffolds;267
9.6.4.1;11.4.1. In vitro evaluation;267
9.6.4.2;11.4.2. In vivo evaluation of HAp;270
9.6.5;11.5. Applications of synthetic HAp scaffolds for tissue engineering;272
9.6.5.1;11.5.1. Treatment of benign bone tumors;272
9.6.5.2;11.5.2. Ocular implants;273
9.6.5.3;11.5.3. Spinal fusion;273
9.6.5.4;11.5.4. Maxillo-facial applications;274
9.6.5.5;11.5.5. Long bone massive load-bearing defects;274
9.6.6;11.6. Future trends;275
9.6.6.1;11.6.1. Future trends in HAp scaffolds for tissue engineering;275
9.6.6.2;11.6.2. Biomolecule incorporation in HAp scaffolds;277
9.6.6.3;11.6.3. Trends in cell types used to populate HAp scaffolds;278
9.6.6.4;11.6.4. Concluding remarks on future trends;278
9.7;Chapter 12: Synthetic hydroxyapatite for bone-healing applications;290
9.7.1;12.1. Introduction;290
9.7.2;12.2. Examples of applications-synthetic hydroxyapatite in clinical studies;290
9.7.2.1;12.2.1. Defining the quality of clinical studies;291
9.7.2.2;12.2.2. Hydroxyapatite coatings;292
9.7.2.2.1;12.2.2.1. Orthopedic applications of hydroxyapatite coatings;292
9.7.2.2.1.1;Hip implants;292
9.7.2.2.1.2;Knee implants;295
9.7.2.2.1.3;Ankle, hand, and spine implants;296
9.7.2.2.2;12.2.2.2. Dental applications of hydroxyapatite coatings;297
9.7.2.3;12.2.3. Hydroxyapatite BGSs;298
9.7.2.3.1;12.2.3.1. Dental applications of hydroxyapatite BGSs;299
9.7.2.3.2;12.2.3.2. Orthopedic applications of hydroxyapatite BGSs;301
9.7.2.3.2.1;Defect filling;301
9.7.2.3.2.2;Impaction grafting;301
9.7.2.3.2.3;Spinal fusion;302
9.7.2.3.3;12.2.3.3. Ophthalmology applications of hydroxyapatite BGSs;303
9.7.3;12.3. Future trends in the clinical use and study of synthetic hydroxyapatites;304
9.8;Chapter 13: Hydroxyapatite coating on biodegradable magnesium and magnesium-based alloys;310
9.8.1;13.1. Introduction;310
9.8.2;13.2. Magnesium;310
9.8.2.1;13.2.1. Biodegradable biomaterial;310
9.8.2.2;13.2.2. Problems;311
9.8.2.3;13.2.3. Potential solutions;312
9.8.3;13.3. Hydroxyapatite coating;313
9.8.3.1;13.3.1. Hydroxyapatite and coating methods;313
9.8.3.2;13.3.2. Solution treatment;313
9.8.3.3;13.3.3. Biomimetic method;316
9.8.3.4;13.3.4. Electrochemical deposition;317
9.8.3.5;13.3.5. Electrochemical coating-challenges;318
9.8.3.6;13.3.6. Electrochemical coating-solutions;318
9.8.4;13.4. Fluoridated hydroxyapatite coating;321
9.8.5;13.5. Hydroxyapatite composite coating;322
9.8.6;13.6. Mechanical integrity;323
9.8.7;13.7. Conclusions;325
9.9;Chapter 14: Animal-bone derived hydroxyapatite in biomedical applications;328
9.9.1;14.1. Introduction;328
9.9.2;14.2. Species of vertebral animal bones processed;329
9.9.3;14.3. The beginnings: historical use of animal bone as a xenogeneic implant; Kiel bone and Boplant;332
9.9.4;14.4. Rationales for using animal bone (natural) sources for making biomedical materials;333
9.9.5;14.5. Aspects of processing and characterization of animal bone-derived materials for biomedical applications;335
9.9.5.1;14.5.1. Lower-temperature processing steps involving bone and the phases produced;336
9.9.5.2;14.5.2. Higher-temperature processing of bone materials to produce biomedical materials;337
9.9.5.3;14.5.3. Changes in biomechanical properties of bone-derived materials as a function of processing;342
9.9.5.4;14.5.4. Gamma irradiation of bone tissue and its effects on mechanical properties of bone specimens;342
9.9.6;14.6. Concerns with disease transmission from animal bone-derived products via in vivo use with a focus on BSE;343
9.9.7;14.7. Orthopedic and dental clinical studies involving the use of animal bone-derived biomaterials with a focus on its us...;345
9.9.8;14.8. Endobon®;346
9.9.9;14.9. Bio-Oss®;347
9.9.10;14.10. Cerabone®;348
9.9.11;14.11. PepGen P-15®;349
9.9.11.1;14.11.1. Commercial products from solvent-cleaned bovine bone: successors to Kiel bone?;349
9.9.11.2;14.11.2. Other in vivo studies involving noncommercial bone graft materials developed;351
9.9.11.3;14.11.3. Other miscellaneous uses of animal bone-derived hydroxyapatite as a biomaterial implant;352
9.9.12;14.12. Conclusion: the future of naturally sourced biomaterials?;352
9.10;Chapter 15: Silicon-substituted hydroxyapatite for biomedical applications;364
9.10.1;15.1. Introduction;364
9.10.1.1;15.1.1. The presence and the effect of silicon in connective tissues;365
9.10.1.2;15.1.2. The influence of silicon on bone cell metabolism;366
9.10.2;15.2. Synthesis and processing of Si-HAp powders;367
9.10.2.1;15.2.1. Procedures of powder synthesis;367
9.10.2.2;15.2.2. Fabrication of granules, scaffolds, and coatings;369
9.10.3;15.3. Influence of silicon on the HAp lattice;370
9.10.3.1;15.3.1. Surface charge;370
9.10.3.2;15.3.2. Microstructure and sintering behavior;372
9.10.3.3;15.3.3. In vitro bioactivity;373
9.10.4;15.4. Biocompatibility;376
9.10.4.1;15.4.1. In vivo tests: bioactivity, material dissolution at the tissue interface and bone healing evaluation;376
9.10.4.2;15.4.2. In vitro cell response: adhesion, proliferation, differentiation and cell-mediated resorption;378
9.10.5;15.5. Clinical applications;381
9.10.6;15.6. Future perspectives: improving the bioactivity by designing biomimetic/smart materials based on Si-HAp;382
9.10.7;15.7. Conclusions;384
10;Index;396


Woodhead Publishing Series in Biomaterials


1 Sterilisation of tissues using ionising radiations
Edited by J. F. Kennedy, G. O. Phillips and P. A. Williams

2 Surfaces and interfaces for biomaterials
Edited by P. Vadgama

3 Molecular interfacial phenomena of polymers and biopolymers
Edited by C. Chen

4 Biomaterials, artificial organs and tissue engineering
Edited by L. Hench and J. Jones

5 Medical modelling
R. Bibb

6 Artificial cells, cell engineering and therapy
Edited by S. Prakash

7 Biomedical polymers
Edited by M. Jenkins

8 Tissue engineering using ceramics and polymers
Edited by A. R. Boccaccini and J. Gough

9 Bioceramics and their clinical applications
Edited by T. Kokubo

10 Dental biomaterials
Edited by R. V. Curtis and T. F. Watson

11 Joint replacement technology
Edited by P. A. Revell

12 Natural-based polymers for biomedical applications
Edited by R. L. Reiss et al

13 Degradation rate of bioresorbable materials
Edited by F. J. Buchanan

14 Orthopaedic bone cements
Edited by S. Deb

15 Shape memory alloys for biomedical applications
Edited by T. Yoneyama and S.Miyazaki

16 Cellular response to biomaterials
Edited by L. Di Silvio

17 Biomaterials for treating skin loss
Edited by D. P. Orgill and C. Blanco

18 Biomaterials and tissue engineering in urology
Edited by J. Denstedt and A. Atala

19 Materials science for dentistry
B. W. Darvell

20 Bone repair biomaterials
Edited by J. A. Planell, S. M. Best, D. Lacroix and A. Merolli

21 Biomedical composites
Edited by L. Ambrosio

22 Drug–device combination products
Edited by A. Lewis

23 Biomaterials and regenerative medicine in ophthalmology
Edited by T. V. Chirila

24 Regenerative medicine and biomaterials for the repair of connective tissues
Edited by C. Archer and J. Ralphs

25 Metals for biomedical devices
Edited by M. Ninomi

26 Biointegration of medical implant materials: Science and design
Edited by C. P. Sharma

27 Biomaterials and devices for the circulatory system
Edited by T. Gourlay and R. Black

28 Surface modification of biomaterials: Methods analysis and applications
Edited by R. Williams

29 Biomaterials for artificial organs
Edited by M. Lysaght and T. Webster

30 Injectable biomaterials: Science and applications
Edited by B. Vernon

31 Biomedical hydrogels: Biochemistry, manufacture and medical applications
Edited by S. Rimmer

32 Preprosthetic and maxillofacial surgery: Biomaterials, bone grafting and tissue engineering
Edited by J. Ferri and E. Hunziker

33 Bioactive materials in medicine: Design and applications
Edited by X. Zhao, J. M. Courtney and H. Qian

34 Advanced wound repair therapies
Edited by D. Farrar

35 Electrospinning for tissue regeneration
Edited by L. Bosworth and S. Downes

36 Bioactive glasses: Materials, properties and applications
Edited by H. O. Ylänen

37 Coatings for biomedical applications
Edited by M. Driver

38 Progenitor and stem cell technologies and therapies
Edited by A. Atala

39 Biomaterials for spinal surgery
Edited by L. Ambrosio and E. Tanner

40 Minimized cardiopulmonary bypass techniques and technologies
Edited by T. Gourlay and S. Gunaydin

41 Wear of orthopaedic implants and artificial joints
Edited by S. Affatato

42 Biomaterials in plastic surgery: Breast implants
Edited by W. Peters, H. Brandon, K. L. Jerina, C. Wolf and V. L. Young

43 MEMS for biomedical applications
Edited by S. Bhansali and A. Vasudev

44 Durability and reliability of medical polymers
Edited by M. Jenkins and A. Stamboulis

45 Biosensors for medical applications
Edited by S. Higson

46 Sterilisation of biomaterials and medical devices
Edited by S. Lerouge and A. Simmons

47 The hip resurfacing handbook: A practical guide to the use and management of modern hip resurfacings
Edited by K. De Smet, P. Campbell and C. Van Der Straeten

48 Developments in tissue engineered and regenerative medicine products
J. Basu and J. W. Ludlow

49 Nanomedicine: Technologies and applications
Edited by T. J. Webster

50 Biocompatibility and performance of medical devices
Edited by J-P. Boutrand

51 Medical robotics: Minimally invasive surgery
Edited by P. Gomes

52 Implantable sensor systems for medical applications
Edited by A. Inmann and D. Hodgins

53 Non-metallic biomaterials for tooth repair and replacement
Edited by P. Vallittu

54 Joining and assembly of medical materials and devices
Edited by Y. (Norman) Zhou and M. D. Breyen

55 Diamond-based materials for biomedical applications
Edited by R.Narayan

56 Nanomaterials in tissue engineering: Fabrication and applications
Edited by A. K. Gaharwar, S. Sant, M. J. Hancock and S. A. Hacking

57 Biomimetic biomaterials: Structure and applications
Edited by A. J. Ruys

58 Standardisation in cell and tissue engineering: Methods and protocols
Edited by V. Salih

59 Inhaler devices: Fundamentals, design and drug delivery
Edited by P. Prokopovich

60 Bio-tribocorrosion in biomaterials and medical implants
Edited by Y. Yan

61 Microfluidic devices for biomedical applications
Edited by X-J. James Li and Y. Zhou

62 Decontamination in hospitals...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.