Murad | Biochemistry, Molecular Biology, and Therapeutic Implications | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band Volume 34, 530 Seiten, Web PDF

Reihe: Advances in Pharmacology

Murad Biochemistry, Molecular Biology, and Therapeutic Implications

Nitric Oxide: Biochemistry, Molecular Biology, And Therapeutic Implications
1. Auflage 1995
ISBN: 978-0-08-058126-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Nitric Oxide: Biochemistry, Molecular Biology, And Therapeutic Implications

E-Book, Englisch, Band Volume 34, 530 Seiten, Web PDF

Reihe: Advances in Pharmacology

ISBN: 978-0-08-058126-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Each volume of Advances in Pharmacology provides a rich collection of reviews on timely topics. Emphasis is placed on the molecular bases of drug action, both applied and experimental. This volume contains chapters that address diverse but interrelated areas pertaining to the chemistry, biochemistry, molecular biology, and pharmacology of nitric oxide in mammalian cells. The contents form a comprehensive treatise of factors influencing the control of nitric oxide production in various cell types. - Presents comprehensive coverage of the chemical properties of nitric oxide and how they form the basis for the multifaceted biological actions for nitric oxide - Contains the most current and detailed documentation of the properties and regulation of nitric oxide synthases - Provides the most up-to-date review of inhalational nitric oxide therapy for treatment of respiratory dysfunction

Murad Biochemistry, Molecular Biology, and Therapeutic Implications jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Nitric Oxide: Biochemistry, Molecular Biology, and Therapeutic Implications;4
3;Copyright Page;5
4;Contents;6
5;Contributors;20
6;Chapter 1. Chemistry of Nitric Oxide: Biologically Relevant Aspects;26
6.1;I. Introduction;26
6.2;II. Physical and Chemical Properties of NO;27
6.3;III. Reaction of NO with Oxygen;29
6.4;IV. Reaction of NO with Superoxide;31
6.5;V. Chemistry of NO-Derived Nitrogen Oxides;32
6.6;VI. Reactions of NO and NO2 with Thiols;33
6.7;VII. Reaction of NO with Amines;33
6.8;VIII. Reaction of NO with Heme Proteins and Metals;34
6.9;IX. Reaction of NO with Oxyhemoglobin and Oxymyoglobin;36
6.10;X. Summary;38
6.11;References;38
7;Chapter 2. Reactions between Nitric Oxide, Superoxide, and Peroxynitrite: Footprints of Peroxynitrite in Vivo;42
7.1;I. Introduction;42
7.2;II. Target Areas for Reactive Species;44
7.3;III. Reactions of Nitric Oxide and Rationale for Product Analysis in Vivo;45
7.4;IV. Oxidative Pathology and the Search for Footprints;51
7.5;V. Phenolic Reaction Products in Vivo: Stable and Specific Footprints of ONOO-;61
8;Chapter 3. Oxygen Radical–Nitric Oxide Reactions in Vascular Diseases;70
8.1;I. Introduction;70
8.2;II. Prooxidant versus Tissue-Protective Reactions of .NO;72
8.3;II. NO-Oxygen Radical Interactions in Atherosclerosis;76
8.4;III. NO-Oxygen Radical Interactions in Transplant Vasculopathy and Restenosis ;86
8.5;IV. NO-Oxygen Radical Interactions in Reperfusion Injury;87
8.6;V. Conclusions;88
8.7;References;90
9;Chapter 4. Nitric Oxide Synthases: Gene Structure and Regulation;96
9.1;I. Overview;96
9.2;II. nNOS;100
9.3;III. iNOS;104
9.4;IV. ecNOS;106
9.5;V. Summary;109
9.6;References;110
10;Chapter 5. Transcription of the Human Neuronal Nitric Oxide Synthase Gene in the Central Nervous System Is Mediated by Multiple Promoters';116
10.1;I. Perspective: Relationship of NOS1 Gene Expression Studies to Other Aspects of Nitric Oxide Biochemistry, Molecular Biology, and Physiology ;116
10.2;II. An Interesting Genomic Structure Underpins Expression of NOS1 in the CNS;119
10.3;III. Expression of NOS2 -Reporter Gene Constructs in Transfection Systems;123
10.4;lV. Discussion;131
10.5;References;134
11;Chapter 6. Regulation of the Expression of the Inducible lsoform of Nitric Oxide Synthase;138
11.1;l. Nitric Oxide;138
11.2;II. NOSs;141
11.3;III. Regulation of iNOS Induction by Endogenous Glucocorticoids ;145
11.4;IV. Polyamines as Inhibitors of the Induction of iNOS: Role of Oxidized Aldehyde Metabolites ;152
11.5;V. Regulation of iNOS Induction by Cytokines;156
11.6;VI. Cellular Mechanisms of the Induction of iNOS;159
11.7;VII. Therapeutic Implications;161
11.8;References;165
12;Chapter 7. Regulation and Function of Inducible Nitric Oxide Synthase during Sepsis and Acute Inflammation;180
12.1;I. Introduction;180
12.2;II. Regulation of iNOS Gene Expression;181
12.3;III. Posttranslational Regulation of Induced NO Synthesis;183
12.4;IV. Cellular Actions of NO;184
12.5;V. Role of NO in Acute Sepsis and Inflammation;187
12.6;VI. NO in Chronic Inflammation;188
12.7;VII. NOS Inhibitors and Therapeutic Implications;189
12.8;VIII. Summary;190
12.9;References;191
13;Chapter 8. Expression and Expressional Control of Nitric Oxide Synthases in Various Cell Types;196
13.1;I. Introduction;196
13.2;II. NOS Nomenclatures;197
13.3;III. Cellular Distribution of NOS Isoforms;198
13.4;IV. Regulation of NOS Expression;199
13.5;V. Concluding Remarks;204
13.6;References;205
14;Chapter 9. Control and Consequences of Endothelial Nitric Oxide Formation;212
14.1;I. Endothelial Nitric Oxide Synthase;212
14.2;II. Regulation of Endothelium-Derived Nitric Oxide Formation;213
14.3;III. Shear Stress-Dependent Endothelial NO Release;214
14.4;IV. NOS Regulation at the Transcriptional Level;217
14.5;V. Functional Consequences of Endothelial NO Formation;220
14.6;VI. Effect of NO on Protein Expression and Gene Transcription;221
14.7;VII. Summary;225
14.8;References;226
15;Chapter 10. Control of Electron Transfer in Neuronal Nitric Oxide Synthase by Calmodulin, Substrate, Substrate Analogs, and Nitric Oxide;232
15.1;I. Introduction;232
15.2;II. Role of CaM in the Control of Heme Iron Reduction;233
15.3;III. An Additional Role for CaM;234
15.4;IV. Control of Heme Reduction by Substrate and Substrate Analogs ;235
15.5;V. NO Feedback Regulation of NOS;236
15.6;References;237
16;Chapter 11. Negative Modulation of Nitric Oxide Synthase by Nitric Oxide and Nitroso Compounds;240
16.1;I. Introduction;240
16.2;II. Inhibition of All Isoforms of NOS by NO and Nitroso Compounds 2 17;242
16.3;III. Antagonism of Endothelium-Dependent Relaxation by NO and NO Donor Drugs ;247
16.4;IV. Modulation of Endothelium-Dependent Vasodilation by S- Nitrosothiols in Vivo ;249
16.5;V. Mechanism of Inhibition of Purified nNOS by NO;252
16.6;VI. Summary and Conclusions;255
16.7;References;257
17;Chapter 12. Regulation of Nitric Oxide Synthase: Role of Oxygen Radicals and Cations in Nitric Oxide Formation;260
17.1;I. Introduction;260
17.2;II. Role of Oxygen Radicals in the Formation of NO and cGMP ;261
17.3;III. Calcium-Dependent Modulation of NO Formation;267
17.4;IV. Effect of Environmental Toxicants on NO Formation;270
17.5;V. Conclusion;272
17.6;References;273
18;Chapter 13. Why Tetrahydrobiopterin?;276
18.1;I. Introduction;276
18.2;II. Effects of H4Biopterin on NOS Activity;277
18.3;III. Effects of H4Biopterin on NOS Conformation;278
18.4;IV. H4Biopterin-Induced Oxidation of NO;279
18.5;V. Why H4Biopterin?;282
18.6;References;284
19;Chapter 14. Nitric Oxide and cGMP Signaling;288
19.1;I. Introduction;288
19.2;II. NO;289
19.3;III. cGMP;292
19.4;IV. Conclusions;298
19.5;References;298
20;Chapter 15. Nitric Oxide and lntracellular Heme;302
20.1;I. Introduction;302
20.2;II. Effects of .NO on the Heme-Containing Enzyme Catalase;304
20.3;III. Effects of .NO Synthesis Induced by Endotoxin or Corynebacterium parvum on Total CYP Heme and Total Microsomal Heme ;304
20.4;IV. Cultured Hepatocytes: Effects of Endogenous and Exogenous NO on Total CYP Heme, Total Microsomal Heme, and CYP Protein ;307
20.5;V. Modulation of Heme-Metabolizing Enzymes as a Result of Heme Liberation 283;308
20.6;VI. Discussion;309
20.7;VII. Summary;311
20.8;References;312
21;Chapter 16. High-Level Expression of Biologically Active Soluble Guanylate Cyclase Using the Baculovirus System Is Strongly Heme-Dependent;318
21.1;I. Introduction;318
21.2;II. Materials and Methods;320
21.3;III. Results and Discussion;324
21.4;References;328
22;Chapter 17. cGMP Signaling through cAMP- and cGMP-Dependent Protein Kinases;330
22.1;I. Nitric Oxide Signaling Mechanisms in Cells;330
22.2;II. cGMP-Dependent Protein Kinase;332
22.3;III. PKG-Mediated Protein Phosphorylation;334
22.4;IV. Role of PKG in VSMC Growth and Differentiation;338
22.5;V. Lessons to Be Learned from Crossover and Nonselectivity of Cyclic Nucleotide Action in the Intact Cell ;339
22.6;References;343
23;Chapter 18. Physiological and Toxicological Actions of Nitric Oxide in the Central Nervous System;348
23.1;l. Introduction;348
23.2;II. Isoforms of NOS;349
23.3;III. Biosynthesis of NO and Regulation of NOS;350
23.4;IV. Localization of NOS in the Nervous System;351
23.5;V. NO as a Neuronal Messenger;353
23.6;VI. Cellular Targets for NO;354
23.7;VII. NO-Mediated Neurotoxicity;356
23.8;VIII. Transgenic NOS Knockout Mice;361
23.9;IX. Potential Roles for NO in Neurological Disorders;362
23.10;X. Summary;362
23.11;References;363
24;Chapter 19. S-Nitrosothiols: Chemistry, Biochemistry, and Biological Actions;368
24.1;I. Introduction;368
24.2;II. EDRF, Nitric Oxide, and S-Nitrosothiols;368
24.3;III. RSNOs in Biological Systems;370
24.4;IV. S-Nitrosoproteins: Functional Effects of Posttranslational Nitrosation ;371
24.5;V. Conclusions;372
24.6;References;373
25;Chapter 20. Glyceraldehyde-3-Phosphate Dehydrogenase: A Target for Nitric Oxide Signaling;376
25.1;I. Introduction;376
25.2;II. Initial NAD+-Dependent Protein Modification of a 39-kDa Protein 353;378
25.3;III. NO-Stimulated NAD+-Dependent Modification of GAPDH;378
25.4;IV. Current Understanding of NO-Stimulated GAPDH Modification ;380
25.5;References;383
26;Chapter 21. Nitric Oxide Donors: Biochemical Pharmacology and Therapeutics;386
26.1;I. Biochemical Pharmacology of NO Donors: How and Where Do They Generate NO? ;387
26.2;II. Therapeutic Aspects of NO Donors;394
26.3;III. Summary;401
26.4;References;401
27;Chapter 22. Nitric Oxide Donors: A Continuing Opportunity in Drug Design;408
27.1;I. Introduction;408
27.2;II. Goal: Reducing Restenosis Risk;410
27.3;III. Artificial Blood Vessels;420
27.4;IV. Summary and Significance;421
27.5;References;421
28;Chapter 23. Nitric Oxide and Peripheral Adrenergic Neuromodulation;424
28.1;I. Introduction;424
28.2;II. Materials and Methods;425
28.3;III. Results and Discussion;428
28.4;IV. Conclusions;436
28.5;References;436
29;Chapter 24. A Study on Tumor Necrosis Factor, Tumor Necrosis Factor Receptors, and Nitric Oxide in Human Fetal Glial Cultures;440
29.1;I. Introduction;440
29.2;II. NO Production by Human Mø and Glia;443
29.3;III. TNF Production, Effects, and Modulation;446
29.4;IV. TNF-Rs;447
29.5;V. Astrocyte TNF-Rs, TNF, and NO;453
29.6;VI. Potential Roles of TNF-Rs in Association with Astrocyte TNF and NO Production ;456
29.7;VII. Conclusions and Recommendations for Future Studies;458
29.8;References;459
30;Chapter 25. Inhaled Nitric Oxide, Clinical Rationale and Applications;464
30.1;I. Background;464
30.2;II. Animal Studies;465
30.3;III. Clinical Studies;467
30.4;IV. Delivery and Monitoring;470
30.5;V. Adverse Effects of Inhaled NO;472
30.6;VI. Summary and Future;475
30.7;References;475
31;Chapter 26. Inhaled Nitric Oxide Therapy of Pulmonary Hypertension and Respiratory Failure in Premature and Term Neonates;482
31.1;I. Introduction;482
31.2;II. NO in the Perinatal Pulmonary Circulation: Experimental Aspects ;483
31.3;III. Role of Inhaled NO Therapy in the Management of Severe PPHN ;488
31.4;IV. Role of Inhaled NO Therapy of Premature Neonates with Severe Respiratory Failure ;492
31.5;V. Conclusions;494
31.6;References;495
32;Chapter 27. Clinical Applications of Inhaled Nitric Oxide in Children with Pulmonary Hypertension;500
32.1;I. Pulmonary Hypertension and Congenital Heart Disease;501
32.2;II. Nitric Oxide and Pulmonary Circulation;502
32.3;III. Clinical Investigation of Inhaled Nitric Oxide;502
32.4;IV. Endothelial Cell Function and Cardiopulmonary Bypass;504
32.5;V. Neonate with Congenital Heart Disease;508
32.6;VI. Treatment of Transient Graft Dysfunction Following Lung Transplantation ;511
32.7;VII. Assessment of Pulmonary Vascular Reactivity prior to Cardiac or Cardiopulmonary Transplantation ;514
32.8;VIII. Congenital Mitral Stenosis;518
32.9;IX. Single-Ventricle Lesions;519
32.10;X. Delivery and Monitoring Considerations;521
32.11;XI. Summary;522
32.12;References;523
33;Index;530
34;Contents of Previous Volumes;542



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.