E-Book, Englisch, 633 Seiten
Osswald / Hernandez-Ortiz Polymer Processing
1. Auflage 2013
ISBN: 978-3-446-41286-6
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: 1 - PDF Watermark
Modeling and Simulation
E-Book, Englisch, 633 Seiten
ISBN: 978-3-446-41286-6
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: 1 - PDF Watermark
Contents:
- Introduction
- Part I - Background
Polymer Material Science, Processing Properties, Polymer Processes
- Part II - Processing Fundamentals
Dimensional Analysis and Scaling, Transport Phenomena in Polymer Processing, Analyses Based on Analytical Solutions
- Part III- Numerical Techniques
Introduction to Numerical Analysis, Finite Differences Method, Finite Element Method, Boundary Element Method, Radial Functions Method
Tim A. Osswald, Ph.D., is Kuo K. and Cindy F. Wang Professor at the University of Wisconsin-Madison College of Engineering and Honorary Professor of Plastics Technology at the University of Erlangen-Nuremberg and the National University of Colombia. He is the author of many books and book chapters, as well as over 100 papers in the field of plastics technology.
Autoren/Hrsg.
Weitere Infos & Material
1;PREFACE;8
2;TABLE OF CONTENTS;10
3;INTRODUCTION;18
3.1;I.1 MODELING AND SIMULATION;18
3.2;I.2 MODELING PHILOSOPHY;21
3.3;I.3 NOTATION;25
3.4;I.4 CONCLUDING REMARKS;27
3.5;REFERENCES;28
4;PART I BACKGROUND;30
5;CHAPTER 1 POLYMER MATERIALS SCIENCE;32
5.1;1.1 CHEMICAL STRUCTURE;32
5.2;1.2 MOLECULAR WEIGHT;35
5.3;1.3 CONFORMATION AND CONFIGURATION OF POLYMER MOLECULES;40
5.4;1.4 MORPHOLOGICAL STRUCTURE;43
5.4.1;1.4.1 Copolymers and Polymer Blends;47
5.5;1.5 THERMAL TRANSITIONS;49
5.6;1.6 VISCOELASTIC BEHAVIOR OF POLYMERS;55
5.6.1;1.6.1 Stress Relaxation;55
5.6.2;1.6.2 Time-Temperature Superposition (WLF-Equation);57
5.7;1.7 EXAMPLES OF COMMON POLYMERS;60
5.7.1;1.7.1 Thermoplastics;60
5.7.2;1.7.2 Thermosetting Polymers;62
5.7.3;1.7.3 Elastomers;63
5.8;Problems;64
5.9;REFERENCES;67
6;CHAPTER 2 PROCESSING PROPERTIES;68
6.1;2.1 THERMAL PROPERTIES;68
6.1.1;2.1.1 Thermal Conductivity;69
6.1.2;2.1.2 Specific Heat;74
6.1.3;2.1.3 Density;76
6.1.4;2.1.4 Thermal Diffusivity;82
6.1.5;2.1.5 Linear Coefficient of Thermal Expansion;82
6.1.6;2.1.6 Thermal Penetration;84
6.1.7;2.1.7 Measuring Thermal Data;84
6.2;2.2 CURING PROPERTIES;90
6.3;2.3 RHEOLOGICAL PROPERTIES;94
6.3.1;2.3.1 Flow Phenomena;94
6.3.2;2.3.2 Viscous Flow Models;99
6.3.3;2.3.3 Viscoelastic Constitutive Models;106
6.3.4;2.3.4 Rheometry;116
6.3.5;2.3.5 Surface Tension;121
6.4;2.4 PERMEABILITY PROPERTIES;124
6.4.1;2.4.1 Sorption;125
6.4.2;2.4.2 Diffusion and Permeation;127
6.4.3;2.4.3 Measuring S, D, and P;131
6.4.4;2.4.4 Diffusion of Polymer Molecules and Self-Diffusion;133
6.5;2.5 FRICTION PROPERTIES;133
6.6;Problems;135
6.7;REFERENCES;139
7;CHAPTER 3 POLYMER PROCESSES;142
7.1;3.1 EXTRUSION;143
7.1.1;3.1.1 The Plasticating Extruder;144
7.1.2;3.1.2 Extrusion Dies;153
7.2;3.2 MIXING PROCESSES;156
7.2.1;3.2.1 Distributive Mixing;159
7.2.2;3.2.2 Dispersive Mixing;160
7.2.3;3.2.3 Mixing Devices;162
7.3;3.3 INJECTION MOLDING;171
7.3.1;3.3.1 The Injection Molding Cycle;172
7.3.2;3.3.2 The Injection Molding Machine;175
7.3.3;3.3.3 Related Injection Molding Processes;180
7.4;3.4 SECONDARY SHAPING;181
7.4.1;3.4.1 Fiber Spinning;182
7.4.2;3.4.2 Film Production;182
7.4.3;3.4.3 Thermoforming;188
7.5;3.5 CALENDERING;189
7.6;3.6 COATING;191
7.7;3.7 COMPRESSION MOLDING;194
7.8;3.8 FOAMING;195
7.9;3.9 ROTATIONAL MOLDING;197
7.10;REFERENCES;198
8;PART II PROCESSING FUNDAMENTALS;200
9;CHAPTER 4 DIMENSIONAL ANALYSIS AND SCALING;202
9.1;4.1 DIMENSIONAL ANALYSIS;203
9.2;4.2 DIMENSIONAL ANALYSIS BY MATRIX TRANSFORMATION;205
9.3;4.3 PROBLEMS WITH NON-LINEAR MATERIAL PROPERTIES;223
9.4;4.4 SCALING AND SIMILARITY;223
9.5;Problems;234
9.6;REFERENCES;237
10;CHAPTER 5 TRANSPORT PHENOMENA IN POLYMER PROCESSING;238
10.1;5.1 BALANCE EQUATIONS;238
10.1.1;5.1.1 The Mass Balance or Continuity Equation;239
10.1.2;5.1.2 The Material or Substantial Derivative;240
10.1.3;5.1.3 The Momentum Balance or Equation of Motion;241
10.1.4;5.1.4 The Energy Balance or Equation of Energy;248
10.2;5.2 MODEL SIMPLIFICATION;251
10.2.1;5.2.1 Reduction in Dimensionality;253
10.2.2;5.2.2 Lubrication Approximation;254
10.3;5.3 SIMPLE MODELS IN POLYMER PROCESSING;256
10.3.1;5.3.1 Pressure Driven Flow of a Newtonian Fluid Through a Slit;256
10.3.2;5.3.2 Flow of a Power Law Fluid in a Straight Circular Tube (Hagen-Poiseuille Equation);258
10.3.3;5.3.3 Flow of a Power Law Fluid in a Slightly Tapered Tube;259
10.3.4;5.3.4 Volumetric Flow Rate of a Power Law Fluid in Axial Annular Flow;260
10.3.5;5.3.5 Radial Flow Between two Parallel Discs — Newtonian Model;261
10.3.6;5.3.6 The Hele-Shaw model;263
10.3.7;5.3.7 Cooling or Heating in Polymer Processing;270
10.4;Problems;274
10.5;REFERENCES;276
11;CHAPTER 6 ANALYSES BASED ON ANALYTICAL SOLUTIONS;278
11.1;6.1 SINGLE SCREW EXTRUSION—ISOTHERMAL FLOW PROBLEMS;279
11.1.1;6.1.1 Newtonian Flow in the Metering Section of a Single Screw Extruder;280
11.1.2;6.1.2 Cross Channel Flow in a Single Screw Extruder;282
11.1.3;6.1.3 Newtonian Isothermal Screw and Die Characteristic Curves;286
11.2;6.2 EXTRUSION DIES—ISOTHERMAL FLOW PROBLEMS;289
11.2.1;6.2.1 End-Fed Sheeting Die;289
11.2.2;6.2.2 Coat Hanger Die;292
11.2.3;6.2.3 Extrusion Die with Variable Die Land Thicknesses;294
11.2.4;6.2.4 Pressure Flow of Two Immiscible Fluids with Different Viscosities;295
11.2.5;6.2.5 Fiber Spinning;297
11.2.6;6.2.6 Viscoelastic Fiber Spinning Model;300
11.3;6.3 PROCESSES THAT INVOLVE MEMBRANE STRETCHING;302
11.3.1;6.3.1 Film Blowing;302
11.3.2;6.3.2 Thermoforming;308
11.4;6.3.2 Thermoforming;308
11.5;6.4 CALENDERING — ISOTHERMAL FLOW PROBLEMS;309
11.5.1;6.4.1 Newtonian Model of Calendering;309
11.5.2;6.4.2 Shear Thinning Model of Calendering;316
11.5.3;6.4.3 Calender Fed with a Finite Sheet Thickness;318
11.6;6.5 COATING PROCESSES;320
11.6.1;6.5.1 Wire Coating Die;320
11.6.2;6.5.2 Roll Coating;322
11.7;6.6 MIXING — ISOTHERMAL FLOW PROBLEMS;326
11.7.1;6.6.1 Effect of Orientation on Distributive Mixing ? Erwin’s Ideal Mixer;326
11.7.2;6.6.2 Predicting the Striation Thickness in a Couette Flow System — Shear Thinning Model;327
11.7.3;6.6.3 Residence Time Distribution of a Fluid Inside a Tube;331
11.7.4;6.6.4 Residence Time Distribution Inside the Ideal Mixer;332
11.8;6.7 INJECTION MOLDING—ISOTHERMAL FLOW PROBLEMS;334
11.8.1;6.7.1 Balancing the Runner System in Multi-Cavity Injection Molds;334
11.8.2;6.7.2 Radial Flow Between Two Parallel discs;337
11.9;6.8 NON-ISOTHERMAL FLOWS;340
11.9.1;6.8.1 Non-Isothermal Shear Flow;340
11.9.2;6.8.2 Non-Isothermal Pressure Flow Through a Slit;342
11.10;6.9 MELTING AND SOLIDIFICATION;343
11.10.1;6.9.1 Melting with Pressure Flow Melt Removal;348
11.10.2;6.9.2 Melting with Drag Flow Melt Removal;350
11.10.3;6.9.3 Melting Zone in a Plasticating Single Screw Extruder;355
11.11;6.10 CURING REACTIONS DURING PROCESSING;361
11.12;6.11 CONCLUDING REMARKS;362
11.13;Problems;362
11.14;REFERENCES;370
12;PART III NUMERICAL TECHNIQUES;372
13;CHAPTER 7 INTRODUCTION TO NUMERICAL ANALYSIS;374
13.1;7.1 DISCRETIZATION AND ERROR;375
13.2;7.2 INTERPOLATION;375
13.2.1;7.2.1 Polynomial and Lagrange Interpolation;376
13.2.2;7.2.2 Hermite Interpolations;383
13.2.3;7.2.3 Cubic Splines;385
13.2.4;7.2.4 Global and Radial Interpolation;388
13.3;7.3 NUMERICAL INTEGRATION;391
13.3.1;7.3.1 Classical Integration Methods;393
13.3.2;7.3.2 Gaussian Quadratures;395
13.4;7.4 DATA FITTING;398
13.4.1;7.4.1 Least Squares Method;399
13.4.2;7.4.2 The Levenberg-Marquardt Method;400
13.5;7.5 METHOD OF WEIGHTED RESIDUALS;407
13.6;Problems;412
13.7;REFERENCES;414
14;CHAPTER 8 FINITE DIFFERENCE METHOD;416
14.1;8.1 TAYLOR-SERIES EXPANSIONS;418
14.2;8.2 NUMERICAL ISSUES;423
14.3;8.3 THE INFO-TRAVEL CONCEPT;424
14.4;8.4 STEADY-STATE PROBLEMS;426
14.5;8.5 TRANSIENT PROBLEMS;440
14.5.1;8.5.1 Higher Order Approximation Techniques;453
14.6;8.6 THE RADIAL FLOW METHOD;459
14.7;8.7 FLOW ANALYSIS NETWORK;470
14.8;8.8 PREDICTING FIBER ORIENTATION — THE FOLGAR-TUCKER MODEL;474
14.9;8.9 CONCLUDING REMARKS;476
14.10;Problems;479
14.11;REFERENCES;481
15;CHAPTER 9 FINITE ELEMENT METHOD;484
15.1;9.1 ONE-DIMENSIONAL PROBLEMS;484
15.1.1;9.1.1 One-Dimensional Finite Element Formulation;485
15.1.2;9.1.2 Numerical Implementation of a One-Dimenional Finite Element Formulation;489
15.1.3;9.1.3 Matrix Storage Schemes;495
15.1.4;9.1.4 Transient Problems;497
15.2;9.2 TWO-DIMENSIONAL PROBLEMS;501
15.2.1;9.2.1 Solution of Posisson’s equation Using a Constant Strain Triangle;501
15.2.2;9.2.2 Transient Heat Conduction Problem Using Constant Strain Triangle;505
15.2.3;9.2.3 Solution of Field Problems Using Isoparametric Quadrilateral Elements.;505
15.2.4;9.2.4 Two Dimensional Penalty Formulation for Creeping Flow Problems;510
15.3;9.3 THREE-DIMENSIONAL PROBLEMS;518
15.3.1;9.3.1 Three-dimensional Elements;518
15.3.2;9.3.2 Three-Dimensional Transient Heat Conduction Problem With Convection;520
15.3.3;9.3.3 Three-Dimensional Mixed Formulation for Creeping Flow Problems;522
15.4;9.4 MOLD FILLING SIMULATIONS USING THE CONTROL VOLUME APPROACH;524
15.4.1;9.4.1 Two-Dimensional Mold Filling Simulation of Non-Planar Parts (2.5D Model);524
15.4.2;9.4.2 Full Three-Dimensional Mold Filling Simulation;528
15.5;9.5 VISCOELASTIC FLUID FLOW;533
15.6;Problems;538
15.7;REFERENCES;539
16;CHAPTER 10 BOUNDARY ELEMENT METHOD;542
16.1;10.1 SCALAR FIELDS;543
16.1.1;10.1.1 Green’s Identities;543
16.1.2;10.1.2 Green’s Function or Fundamental Solution;546
16.1.3;10.1.3 Integral Formulation of Poisson’s Equation;547
16.1.4;10.1.4 BEM Numerical Implementation of the 2D Laplace Equation;549
16.1.5;10.1.5 2D Linear Elements.;553
16.1.6;10.1.6 2D Quadratic Elements;556
16.1.7;10.1.7 Three-Dimensional Problems;559
16.2;10.2 MOMENTUM EQUATIONS;564
16.2.1;10.2.1 Green’s Identities for the Momentum Equations;565
16.2.2;10.2.2 Integral Formulation for the Momentum Equations;565
16.2.3;10.2.3 BEM Numerical Implementation of the Momentum Balance Equations;567
16.2.4;10.2.4 Numerical Treatment of the Weakly Singular Integrals;570
16.2.5;10.2.5 Solids in Suspension;575
16.3;10.3 COMMENTS OF NON-LINEAR PROBLEMS;584
16.4;10.4 OTHER BOUNDARY ELEMENT APPLICATIONS;585
16.5;Problems;591
16.6;REFERENCES;594
17;CHAPTER 11 RADIAL FUNCTIONS METHOD;598
17.1;11.1 THE KANSA COLLOCATION METHOD;599
17.2;11.2 APPLYING RFM TO BALANCE EQUATIONS IN POLYMER PROCESSING;601
17.2.1;11.2.1 Energy Balance;601
17.2.2;11.2.2 Flow problems;608
17.3;Problems;625
17.4;REFERENCES;627
18;INDEX;628




