Park / Sun / Foresti Security and Privacy in Communication Networks

16th EAI International Conference, SecureComm 2020, Washington, DC, USA, October 21-23, 2020, Proceedings, Part II
1. Auflage 2020
ISBN: 978-3-030-63095-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

16th EAI International Conference, SecureComm 2020, Washington, DC, USA, October 21-23, 2020, Proceedings, Part II

E-Book, Englisch, Band 336, 489 Seiten, eBook

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

ISBN: 978-3-030-63095-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This two-volume set LNICST 335 and 336 constitutes the post-conference proceedings of the 16 th International Conference on Security and Privacy in Communication Networks, SecureComm 2020, held in Washington, DC, USA, in October 2020. The conference was held virtually due to COVID-19 pandemic. The 60 full papers were carefully reviewed and selected from 120 submissions. The papers focus on the latest scientific research results in security and privacy in wired, mobile, hybrid and ad hoc networks, in IoT technologies, in cyber-physical systems, in next-generation communication systems in web and systems security and in pervasive and ubiquitous computing.
Park / Sun / Foresti Security and Privacy in Communication Networks jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


A Practical Machine Learning-Based Framework to Detect DNS Covert Communication in Enterprises.- CacheLoc: Leveraging CDN Edge Servers for User Geolocation.- Modeling Mission Impact of Cyber Attacks on Energy Delivery Systems.- Identifying DApps and User Behaviors on Ethereum via Encrypted Traffic.- TransNet: Unseen Malware Variants Detection Using Deep Transfer Learning.- A Brokerage Approach for Secure Multi-Cloud Storage Resource Management.- On the Effectiveness of Behavior-based Ransomware Detection.- PoQ: A Consensus Protocol for Private Blockchains Using Intel SGX Share Withholding in Blockchain Mining.- PEDR: A Novel Evil Twin Attack Detection Scheme Based on Phase Error Drift Range.- Differentially Private Social Graph Publishing for Community Detection.- LaaCan: A Lightweight Authentication Architecture for Vehicle Controller Area Network.- A Machine Learning based Smartphone App for GPS Spoofing Detection.- AOMDroid: Detecting Obfuscation Variants of Android Malware Using Transfer Learning.- ML-Based Early Detection of IoT Botnets.- Post-Quantum Cryptography in WireGuard VPN.- Evaluating the Cost of Personnel Activities in Cybersecurity Management: a Case Study.- SGX-Cube: An SGX-Enhanced Single Sign-On System against Server-side Credential Leakage.- EW256357: A New Secure NIST P-256 Compatible  Elliptic Curve for VoIP Applications’ Security.- Ucam: A User-Centric, Blockchain-Based and End-to-End Secure Home IP Camera System.- Private Global Generator Aggregation from Different Types of Local Models.- Perturbing Smart Contract Execution through the Underlying Runtime.- Blockchain based Multi-keyword Similarity Search Scheme over Encrypted Data.- Using the Physical Layer to Detect Attacks on Building Automation Networks.- Formalizing Dynamic Behaviors of Smart Contract Workflow in Smart Healthcare Supply Chain.- Malware Classification using Attention-based Transductive Learning Network.- COOB: Hybrid secure device pairing scheme in a hostile environment.- A robust watermarking scheme with high security and low computational complexity.- Selecting Privacy Enhancing Technologies for IoT-Based Services.- Khopesh - Contact Tracing Without Sacrificing Privacy.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.