Peeters | Protides of the Biological Fluids | E-Book | www.sack.de
E-Book

E-Book, Englisch, 694 Seiten, Web PDF

Peeters Protides of the Biological Fluids

Proceedings of the Twenty-First Colloquium, Brugge, 1973
1. Auflage 2013
ISBN: 978-1-4831-4640-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the Twenty-First Colloquium, Brugge, 1973

E-Book, Englisch, 694 Seiten, Web PDF

ISBN: 978-1-4831-4640-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Protides of the Biological Fluids contains the proceedings of the Twenty-First Colloquium held at Brugge in 1973. The Colloquium covers topics on membrane proteins, proteinuria, and new techniques under which comes the automated nephelometric analysis of proteins. The book is organized into three sections according to the topics of the Colloquium. Section A, Membrane, discusses all aspects of membrane proteins including their isolation and solubilization, the nature of their lipid-protein interaction and the physical probes used for their characterization. Section B, Urinary Proteins, centers on proteinuria, electrophoretic and immunoelectrophoretic methods enabling characterization of renal disease, and properties of specific urinary proteins and enzymes. The last section describes two immunological methods for protein quantitation.

Peeters Protides of the Biological Fluids jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Protides of the Biological Fluids;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;16
6;Acknowledgements;17
7;THE SECOND ARNE TISELIUS MEMORIAL LECTURE;18
7.1;Chapter 1. Alpha, Beta, Gamma, Omega? The Past, Present and Future of Plasma Proteins;20
7.1.1;INTRODUCTION;20
7.1.2;DEVELOPMENT OF BOUNDARY ELECTROPHORESIS BY TISELIUS;20
7.1.3;ELECTROPHORETIC RESOLUTION OF SERUM BY DIFFERENT METHODS;22
7.1.4;PROTEIN SYSTEMS IN PLASMA;26
7.1.5;GENETIC MARKERS IN PLASMA PROTEINS;28
7.1.6;PRIMARY STRUCTURE AND THREE-DIMENSIONAL CONFIGURATION OF PLASMA PROTEINS;30
7.1.7;THE IMMUNOGLOBULINS;32
7.1.8;CONCLUSION;34
7.1.9;ACKNOWLEDGEMENTS;35
7.1.10;REFERENCES;35
8;SECTION A: Membranes;36
8.1;Chapter 2. The Interpretation of Molecular Weight Data on Membrane Proteins;38
8.1.1;REFERENCES;43
8.2;Chapter 3. Solubilization of Hydrophobic Proteins from Human Erythrocyte Membranes by Maleylation or Succinylation;44
8.2.1;ABSTRACT;44
8.2.2;INTRODUCTION;44
8.2.3;MATERIALS AND METHODS;44
8.2.4;RESULTS;45
8.2.5;DISCUSSION;46
8.2.6;ACKNOWLEDGEMENTS;46
8.2.7;REFERENCES;48
8.3;Chapter 4. Chemical and Antigenic Properties of a Human Erythrocyte Protein;50
8.3.1;ABSTRACT;55
8.3.2;ACKNOWLEDGEMENTS;55
8.3.3;REFERENCES;55
8.4;Chapter 5. Purification of Spectrin from Human Erythrocyte Membrane, Monitored and Characterized by Quantitative Immunoelectrophoresis;56
8.4.1;INTRODUCTION;56
8.4.2;ANALYTICAL METHODS;56
8.4.3;PREPARATION OF SPECTRIN;59
8.4.4;HETEROGENEITY OF SPECTRIN;59
8.4.5;ACKNOWLEDGEMENTS;60
8.4.6;REFERENCES;60
8.5;Chapter 6. A Quantitative Approach to the Fraction of Red Cell Cholesterol which can Bind Streptolysin O;62
8.5.1;TECHNIQUES;62
8.5.2;RESULTS;63
8.5.3;REFERENCES;65
8.6;Chapter 7. The Sialic Acid of the Membrane as a Determinant of the Life-span of Erythrocytes;66
8.6.1;REFERENCES;70
8.7;Chapter 8. Defective Red Cell Membrane Proteins in the Etiology of Hereditary Spherocytosis;72
8.7.1;EVIDENCE THAT DEFECTIVE RBC MEMBRANES UNDERLIE HS;72
8.7.2;NATURE OF THE MEMBRANE DEFECT IN HS;73
8.7.3;EVIDENCE THAT DEFECTIVE MEMBRANE MICROFILAMENTS UNDERLIE HS;74
8.7.4;REFERENCES;78
8.8;Chapter 9. Solubilization of Transplantation Antigens and Receptors for Antilymphocytic Antibody from Lymphocyte Membranes;80
8.8.1;INTRODUCTION;80
8.8.2;MATERIALS AND METHODS;80
8.8.3;RESULTS AND DISCUSSION;81
8.8.4;REFERENCES;83
8.9;Chapter 10. The Isolation and Characterization of Rat Lymphocyte Plasma Membranes;84
8.9.1;ACKNOWLEDGEMENTS;87
8.9.2;REFERENCES;88
8.10;Chapter 11. Plasma Membrane Proteins of Unstimulated and Concanavalin A Stimulated Rabbit Thymus Lymphocytes;90
8.10.1;INTRODUCTION;90
8.10.2;MATERIALS AND METHODS;90
8.10.3;RESULTS AND DISCUSSION;91
8.10.4;REFERENCES;95
8.11;Chapter 12. Effects of Tumor Histones on Human Cells in Culture;96
8.11.1;INTRODUCTION;96
8.11.2;EXPERIMENTAL;97
8.11.3;RESULTS AND DISCUSSION;98
8.11.4;REFERENCES;101
8.12;Chapter 13. Purification and Characterization of HL-A Antigens from Human Platelet Membranes;102
8.12.1;INTRODUCTION;102
8.12.2;MATERIAL AND METHODS;102
8.12.3;RESULTS;103
8.12.4;DISCUSSION;104
8.12.5;ACKNOWLEDGEMENTS;106
8.12.6;REFERENCES;106
8.13;Chapter 14. HL-A Monospecific Proteins from Thrombocyte Membranes;108
8.13.1;CONCLUSIONS;111
8.13.2;ACKNOWLEDGEMENTS;111
8.13.3;REFERENCES;111
8.14;Chapter 15. Isolation and Characterization of Rhodopsin;114
8.14.1;INTRODUCTION;114
8.14.2;MORPHOLOGY OF THE ROD CELL;114
8.14.3;VISUAL PIGMENT PROPERTIES;114
8.14.4;ISOLATION OF PHOTORECEPTOR MEMBRANES;116
8.14.5;CHEMICAL COMPOSITION OF PHOTORECEPTOR MEMBRANES;118
8.14.6;ROLE OF PHOSPHOLIPIDS;119
8.14.7;SOLUBILIZATION OF RHODOPSIN;119
8.14.8;BINDING SITE OF CHROMOPHORE;121
8.14.9;CHROMOPHORE MIGRATION;121
8.14.10;SULFHYDRYL GROUPS OF RHODOPSIN;123
8.14.11;CONCLUSION AND SUMMARY;124
8.14.12;REFERENCES;124
8.15;Chapter 16. Solubilization and Reaggregation of Sarcoplasmic Reticulum Membranes;126
8.15.1;ACKNOWLEDGEMENT;130
8.15.2;REFERENCES;130
8.16;Chapter 17. Two Types of Sialoglycoproteins in Lens Capsules of Ox and Rabbit;132
8.16.1;INTRODUCTION;132
8.16.2;EXPERIMENTAL;133
8.16.3;RESULTS;134
8.16.4;DISCUSSION;139
8.16.5;REFERENCES;140
8.17;Chapter 18. Structural Glycoproteins in Cell Membranes and in Extracellular Membranes;142
8.17.1;MACROMOLECULAR COMPOSITION OF EXTRACELLULAR MEMBRANES;143
8.17.2;MORPHOLOGY OF STRUCTURAL GLYCOPROTEINS;143
8.17.3;DISTRIBUTION OF STRUCTURAL GLYCOPROTEINS;146
8.17.4;ROLE OF STRUCTURAL GLYCOPROTEINS IN CELL DIFFERENTIATION AND MEMBRANE MORPHOLOGY;146
8.17.5;CONCLUSIONS AND SUMMARY;148
8.17.6;ACKNOWLEDGEMENTS;148
8.17.7;REFERENCES;148
8.18;Chapter 19. Plasma Membranes from Muscle Tissue;150
8.18.1;ABSTRACT;150
8.18.2;METHODS;152
8.18.3;RESULTS;152
8.18.4;DISCUSSION;154
8.18.5;CONCLUSIONS;155
8.18.6;REFERENCES;156
8.19;Chapter 20. Evidence for Myosin in the Surface Membrane of Tissue Cells;158
8.19.1;REFERENCES;163
8.20;Chapter 21. Smooth Muscle Cell Membranes;164
8.20.1;MATERIALS AND METHODS;164
8.20.2;RESULTS;165
8.20.3;DISCUSSION;166
8.20.4;REFERENCES;166
8.21;Chapter 22. Fractionation of Membrane Proteins from Acholeplasma Laidlawii by Preparative Agarose-Suspension Electrophoresis;168
8.21.1;ABSTRACT;168
8.21.2;INTRODUCTION;168
8.21.3;MATERIALS AND METHODS;168
8.21.4;RESULTS;169
8.21.5;DISCUSSION;173
8.21.6;ACKNOWLEDGEMENTS;173
8.21.7;REFERENCES;173
8.22;Chapter 23. Protein Distribution in Membranes;174
8.22.1;PROTEIN DISTRIBUTION NORMAL TO THE MEMBRANE PLANE;174
8.22.2;PROTEIN DISTRIBUTION IN THE PLANE OF THE MEMBRANE;175
8.22.3;THERMODYNAMIC APPROACH TO MEMBRANES AS TWO-DIMENSIONAL SOLUTIONS;176
8.22.4;GENERAL OBSERVATIONS;178
8.22.5;ACKNOWLEDGEMENTS;179
8.22.6;REFERENCES;179
8.23;Chapter 24. Recent Thermal and N.M.R. Studies of Lipids and Membrane Systems;182
8.23.1;INTRODUCTION;182
8.23.2;PHASE TRANSITIONS OF LIPIDS AND MEMBRANES;182
8.23.3;LIPID PHASE TRANSITIONS AND DRUG ACTION;184
8.23.4;NUCLEAR MAGNETIC RESONANCE STUDIES;186
8.23.5;REFERENCES;190
8.24;Chapter 25. Impurity Effects of Spin-Label Probes: An Evaluation Using Monomolecular Film Techniques;192
8.24.1;ABSTRACT;192
8.24.2;INTRODUCTION;192
8.24.3;DISCUSSION;197
8.24.4;ACKNOWLEDGEMENT;198
8.24.5;REFERENCES AND NOTES;198
8.25;Chapter 26. Protein—Lipid Interactions of the Membrane-PenetratingMN-Glycoprotein from the Human Erythrocyte;200
8.25.1;REFERENCES;206
8.26;Chapter 27. Evidence for Protein Penetration in Mitochondrial Membrane Structure;208
8.26.1;FORMATION OF A MITOCHONDRIAL PROTEIN–PHOSPHOLIPID–BASIC PROTEIN TERNARY COMPLEX;208
8.26.2;EFFECT OF PHOSPHOLIPASES ON NATURAL AND RECONSTITUTED MEMBRANES;211
8.26.3;PROTEOLYTIC ENZYMES;211
8.26.4;TEMPERATURE DEPENDENCE OF MITOCHONDRIAL ACTIVITIES;212
8.26.5;CONCLUSION;213
8.26.6;REFERENCES;214
8.27;Chapter 28. Use of Multifunctional Dextran Derivatives as Reagents to Study Plasma Membrane Protein Distribution;216
8.27.1;I. INTRODUCTION;216
8.27.2;II. MATERIALS AND METHODS;216
8.27.3;III. RESULTS;218
8.27.4;IV. DISCUSSION;220
8.27.5;REFERENCES;220
8.28;Chapter 29. Protein—Lipid Interactions in Red Cell Membranes;222
8.28.1;I. RECOMBINATION OF PROTEINS AND LIPIDS FROM RED CELL MEMBRANES;223
8.28.2;II. DIFFERENTIAL BINDING OF LIPID BY MEMBRANE PROTEINS OF HUMAN AND SHEEP ERYTHROCYTES;226
8.28.3;CONCLUSION;229
8.28.4;REFERENCES;230
8.29;Chapter 30. Spin Label Studies of the Influence of Peptides on the Organization of Lipids in Bilayers;232
8.29.1;INTRODUCTION;232
8.29.2;METHODS;233
8.29.3;RESULTS;234
8.29.4;DISCUSSION AND CONCLUSIONS;237
8.29.5;REFERENCES;238
8.30;Chapter 31. Enzymes and Ions at Lipid Monolayers;240
8.30.1;(a) EFFECT OF LIPIDVERBÄNDE ON IONS NEAR A LIPID FILM;240
8.30.2;(b) EFFECT OF LIPIDVERBÄNDE ON PROTEINS ADSORBED TO A LIPID FILM;240
8.30.3;(c) EFFECT OF IONS ON LIPIDVERBÄNDE;241
8.30.4;REFERENCES;242
8.31;Chapter 32. Lipid—Protein Interactions in Human Plasma High Density Lipoproteins;244
8.31.1;SUMMARY;252
8.31.2;REFERENCES;253
8.32;Chapter 33. A Comparison of Lipoproteins Derived from CNS Myelin of the Normal and of the Mutant 'qq' Mouse;254
8.32.1;MATERIALS AND METHODS;254
8.32.2;RESULTS;255
8.32.3;REFERENCES;257
8.33;Chapter 34. Protein Conformational Studies in Biological Membranes;258
8.33.1;REFERENCES;261
8.34;Chapter 35. The Small-Intestinal Sucrase—Isomaltase Complex: Reconstitution of Sucrase—Isomaltase-dependent Sugar Transport with Black Lipid Membranes;262
8.34.1;THE SUCRASE-ISOMALTASE COMPLEX AS SUI GENERIS MEMBRANE CARRIER;268
8.34.2;ACKNOWLEDGEMENT;270
8.34.3;REFERENCES;271
8.35;Chapter 36. Molecular Structure of Acetylcholinesterase;272
8.35.1;REFERENCES;273
8.36;Chapter 37. Structure of Membrane-bound Acetylcholinesterase;274
8.36.1;ACKNOWLEDGEMENTS;278
8.36.2;REFERENCES;278
8.37;Chapter 38. The Influence of Lipid Environment of Membrane-bound Enzymes in Yeast Mitochondria;280
8.37.1;REFERENCES;283
8.38;Chapter 39. Studies on Binding of the Direct Lytic Factor (DLF) of Cobra Venom (Naja naja) to Red Cell Membranes;284
8.38.1;REFERENCES;285
8.39;Chapter 40. Plasma Membrane Insulin Receptor Regulation by Genetic, Metabolic, and Hormonal Factors;286
8.39.1;CHEMICAL SPECIFICITY OF INSULIN RECEPTORS;286
8.39.2;BIOLOGICAL SPECIFICITY OF INSULIN RECEPTORS;287
8.39.3;GENETIC, METABOLIC, AND HORMONAL REGULATION OF THE INSULIN RECEPTOR;287
8.39.4;REFERENCES;290
8.40;Chapter 41. Properties of the Gonadotropin Receptor in Bovine Corpora Lutea;292
8.40.1;ACKNOWLEDGEMENTS;295
8.40.2;REFERENCES;295
8.41;Chapter 42. Optical and Enzymatic Effects of Growth Hormone Interaction with Plasma Membranes;298
8.41.1;REFERENCES;299
8.42;Chapter 43. Genetic Control of the Induction of the Antibody Response;300
8.42.1;ACKNOWLEDGEMENTS;306
8.42.2;REFERENCES;306
8.43;Chapter 44. Antigenicity of Human Erythrocyte Glycoproteins;308
8.43.1;ACKNOWLEDGEMENTS;311
8.43.2;REFERENCES;311
8.44;Chapter 45. Comparison of O-Alloantigen and Mouse T-Lymphocyte Specific Xenoantigen (MTLA);312
8.44.1;INTRODUCTION;312
8.44.2;MATERIALS AND METHODS;312
8.44.3;RESULTS AND DISCUSSION;313
8.44.4;ACKNOWLEDGEMENTS;315
8.44.5;REFERENCES;315
8.45;Chapter 46. Membrane Antigens Specific for Dividing Human T or B . Lymphoid Cells;318
8.45.1;MATERIALS AND METHODS;318
8.45.2;RESULTS;319
8.45.3;DISCUSSION;321
8.45.4;ACKNOWLEDGEMENT;321
8.45.5;REFERENCES;321
8.46;Chapter 47. Shedding of Lymphocytes Coated with Radio-labelled Anti-HL-A;324
8.46.1;CONCLUSIONS;327
8.46.2;REFERENCES;327
8.47;Chapter 48. Demonstration of Surface-Ig on Thymus Cells;328
8.47.1;MATERIALS AND METHODS;328
8.47.2;RESULTS;328
8.47.3;CONCLUDING REMARKS;330
8.47.4;ACKNOWLEDGEMENTS;331
8.47.5;REFERENCES;331
8.48;Chapter 49. Immunological Studies of Plasma Membrane Fractions Isolated from Normal and Cancerous Human Gastric Mucosa;332
8.48.1;RESULTS;332
8.48.2;DISCUSSION;334
8.48.3;REFERENCES;336
8.49;Chapter 50. Immunological Study of Plasma Membrane of Human Gastric Mucosa;338
8.49.1;MATERIALS AND METHODS;338
8.49.2;RESULTS;339
8.49.3;DISCUSSION;342
8.49.4;ACKNOWLEDGEMENT;343
8.49.5;REFERENCES;343
8.50;Chapter 51. Presence of an SV 40 Coded Antigen on the Surface of Different Cell Lines Transformed by this Virus;344
8.50.1;MATERIAL AND METHODS;345
8.50.2;RESULTS;345
8.50.3;DISCUSSION;346
8.50.4;REFERENCES;347
8.51;Chapter 52. Membrane Proteins and Complement Action;348
8.51.1;INTRODUCTION;348
8.51.2;EXPERIMENTAL PROCEDURES;348
8.51.3;RESULTS;350
8.51.4;DISCUSSION;352
8.51.5;SUMMARY;354
8.51.6;REFERENCES;354
9;SECTION B: Urinary Proteins;356
9.1;Chapter 53. Physiological Basis of Proteinuria;358
9.1.1;I. GLOMERULAR PROTEINURIA;359
9.1.2;II. OVERFLOW PROTEINURIA;360
9.1.3;III. TUBULAR PROTEINURIA;362
9.1.4;IV. NEPHROGENIC PROTEINURIAS;362
9.1.5;CONCLUSIONS;363
9.1.6;REFERENCES;363
9.2;Chapter 54. Histuria (Tissue-like Material Appearing in Urine Under Pathological Conditions);364
9.2.1;ABSTRACT;364
9.2.2;METHODS;364
9.2.3;RESULTS;366
9.2.4;DISCUSSION;370
9.2.5;REFERENCES;372
9.3;Chapter 55. Correlation of Proteinuria and Renal Function in Cadaveric Transplants;374
9.3.1;METHODS;374
9.3.2;RESULTS AND DISCUSSION;374
9.3.3;CONCLUSIONS;378
9.3.4;REFERENCES;378
9.4;Chapter 56. Urinary Serum Proteins;380
9.4.1;METHODS AND MATERIAL;380
9.4.2;RESULTS;381
9.4.3;DISCUSSION;382
9.4.4;CONCLUSIONS;386
9.4.5;REFERENCES;386
9.5;Chapter 57. "Febrile Proteinuria": Proteinuria in Non-Renal Infectious Diseases;388
9.5.1;MATERIAL;388
9.5.2;METHODS;388
9.5.3;RESULTS;389
9.5.4;COMMENTS;391
9.5.5;REFERENCES;391
9.6;Chapter 58. High- and Low-Molecular Weight Protein Excretion in Exercise Proteinuria;392
9.6.1;REFERENCES;395
9.7;Chapter 59. Immunoelectrophoretic Study of Normal and Pathological Urinary Protein Patterns including Proteinuria of Kidney Transplant Patients;396
9.7.1;ACKNOWLEDGEMENTS;400
9.7.2;REFERENCES;404
9.8;Chapter 60. A Simple Method for Isolation and Study of Low Molecular Weight Urinary Proteins;406
9.8.1;REFERENCES;409
9.9;Chapter 61. Immunoelectrophoresis: A Convenient Method of Studying "Minimal Changes" in Proteinuria;410
9.9.1;MATERIALS AND METHODS;410
9.9.2;NORMAL PROTEINURIA;410
9.9.3;RESULTS;413
9.9.4;CONCLUSIONS;417
9.9.5;REFERENCES;417
9.10;Chapter 62. Electrophoretic, Immunoelectrophoretic and Immunodiffusion Analysis in Different Types of Proteinuria;418
9.10.1;ABSTRACT;418
9.10.2;INTRODUCTION;418
9.10.3;MATERIALS AND METHODS;418
9.10.4;RESULTS AND DISCUSSION;419
9.10.5;REFERENCES;422
9.11;Chapter 63. Characterization of Proteinuria in Patients with Monoclonal Gammopathies through Sodium Dodecyl Sulphate—Polyacrylamide Gel Electrophoresis;424
9.11.1;ABSTRACT;424
9.11.2;INTRODUCTION;424
9.11.3;MATERIAL AND METHODS;425
9.11.4;RESULTS AND DISCUSSION;425
9.11.5;ACKNOWLEDGEMENTS;429
9.11.6;REFERENCES;429
9.12;Chapter 64. Plasma Protein Distribution in Kidney;430
9.12.1;REFERENCES;434
9.13;Chapter 65. Renal Regulation of Serum Protein Metabolism;436
9.13.1;REFERENCES;439
9.14;Chapter 66. Renal Function and Plasma Lysozyme Turnover;440
9.14.1;MATERIAL AND METHODS;440
9.14.2;RESULTS AND DISCUSSION;440
9.14.3;REFERENCES;445
9.15;Chapter 67. Renal Enzyme Proteolysis of L-Chain with "Amyloid" Formation and Altered L-Chain Metabolism in S.L.E.;446
9.15.1;METHODS;446
9.15.2;RESULTS;447
9.15.3;DISCUSSION;449
9.15.4;REFERENCES;450
9.16;Chapter 68. Mechanisms of C3 Breakdown by Hypocomplementaemic Serum from Patients with Mesangiocapillary Nephritis;452
9.16.1;ABSTRACT;452
9.16.2;INTRODUCTION;452
9.16.3;METHODS;453
9.16.4;RESULTS;454
9.16.5;DISCUSSION;454
9.16.6;REFERENCES;457
9.17;Chapter 69. Albumin Catabolic Rate During Peritoneal Dialysis in Acute and Chronic Uremia;458
9.17.1;INTRODUCTION;458
9.17.2;MATERIAL AND METHOD;458
9.17.3;RESULTS;461
9.17.4;DISCUSSION;462
9.17.5;REFERENCES;464
9.18;Chapter 70. Anomalies of IgG Clearance in Focal Glomerulosclerosis;466
9.18.1;ACKNOWLEDGMENTS;468
9.18.2;REFERENCES;468
9.19;Chapter 71. Studies on the Clinical Value of Protein Clearance in Renal Disease;470
9.19.1;PATIENTS;470
9.19.2;METHODS;470
9.19.3;RESULTS;470
9.19.4;CONCLUSION;473
9.20;Chapter 72. A Study of the Glomerular Protein Leak using Non-Protein Macromolecules;474
9.20.1;REFERENCES;475
9.21;Chapter 73. Glomerular Proteinuria: Comparison of Immunological and Morphological Criteria;476
9.21.1;ABSTRACT;476
9.21.2;THERAPY;478
9.21.3;ACKNOWLEDGEMENTS;479
9.21.4;REFERENCES;479
9.22;Chapter 74. Urinary Albumin Excretion and Dextran Clearance in the Development of Diabetic Glomerulosclerosis;480
9.22.1;REFERENCES;483
9.23;Chapter 75. Purification of Basement Membrane Antigens from Normal Human Urine by Affinity Chromatography;484
9.23.1;ABSTRACT;484
9.23.2;INTRODUCTION;484
9.23.3;MATERIAL;485
9.23.4;METHODS;485
9.23.5;RESULTS;486
9.23.6;REFERENCES;488
9.24;Chapter 76. Immunochemical Characterization of Human Glomerular Basement Membrane;490
9.24.1;INTRODUCTION;490
9.24.2;MATERIALS AND METHODS;490
9.24.3;RESULTS AND DISCUSSION;491
9.24.4;SUMMARY;493
9.24.5;ACKNOWLEDGEMENT;493
9.24.6;REFERENCES;493
9.25;Chapter 77. Differential Metabolism of Tubular Proteins;494
9.25.1;REFERENCES;501
9.26;Chapter 78. Structure and Function of the Retinol-Binding Protein: A Protein Characteristic of Tubular Proteinuria;502
9.26.1;REFERENCES;507
9.27;Chapter 79. Specific Tubular Histuria Following Renal Transplantation;510
9.27.1;REFERENCES;512
9.28;Chapter 80. Proximal Tubule Fluid Protein Concentrations in Normal and Anti-GBM Nephritic Rats;514
9.28.1;ACKNOWLEDGEMENTS;516
9.29;Chapter 81. Sequential Development of Tubular Proteinuria in Balkan Nephropathy;518
9.29.1;METHODS;518
9.29.2;RESULTS AND DISCUSSION;519
9.29.3;REFERENCES;521
9.30;Chapter 82. Low Molecular Weight Proteins in Tubular Proteinuria;522
9.30.1;RESULTS AND DISCUSSION;525
9.30.2;REFERENCES;528
9.31;Chapter 83. Renal Handling of ß2-Microglobulin;530
9.31.1;INTRODUCTION;530
9.31.2;MATERIAL AND METHODS;530
9.31.3;RESULTS;531
9.31.4;DISCUSSION;532
9.31.5;SUMMARY;534
9.31.6;REFERENCES;534
9.32;Chapter 84. The Urinary Excretion of ß2-Microglobulin (ß2µ) in Renal Disorders;536
9.32.1;INTRODUCTION;536
9.32.2;PATIENTS;536
9.32.3;PROCEDURES;536
9.32.4;CONTROL OF URINARY pH;537
9.32.5;REPRODUCIBILITY;537
9.32.6;THE URINE/SERUM RATIO OF ß2 -MICROGLOBULIN;539
9.32.7;DISCUSSION;540
9.32.8;REFERENCES;540
9.33;Chapter 85. The Cerebrospinal Fluid Microglobulins;542
9.33.1;REFERENCES;544
9.34;Chapter 86. Characterization and Immunochemical Quantitation of Human Uromucoid;546
9.34.1;METHODS;546
9.34.2;RESULTS AND DISCUSSION;547
9.34.3;SUMMARY;552
9.34.4;REFERENCES;552
9.35;Chapter 87. Uromucoid Excretion by Normal Individuals and Stone-formers;554
9.35.1;REFERENCES;557
9.36;Chapter 88. Isoelectric Focusing Studies on the Distribution of Uroproteins with Plasminogen Activator Activity;558
9.36.1;ABSTRACT;558
9.36.2;MATERIAL AND METHODS;559
9.36.3;RESULTS;559
9.36.4;DISCUSSION;561
9.36.5;ACKNOWLEDGEMENTS;562
9.36.6;REFERENCES;562
9.37;Chapter 89. Urinary Excretion of Lysosomal Enzymes in Essential Hypertension;564
9.37.1;MATERIALS AND METHODS;564
9.37.2;RESULTS;564
9.37.3;DISCUSSION;565
9.37.4;REFERENCES;567
9.38;Chapter 90. New Isoenzymes of Acid Hydrolases in Human Urine;568
9.38.1;METHODS;568
9.38.2;RESULTS;568
9.38.3;CONCLUSION;570
9.38.4;REFERENCES;570
9.39;Chapter 91. Urinary Lipids in Proteinuria;572
9.39.1;INTRODUCTION;572
9.39.2;MATERIALS AND METHODS;572
9.39.3;RESULTS;572
9.39.4;DISCUSSION;574
9.39.5;ACKNOWLEDGEMENTS;576
9.39.6;REFERENCES;576
9.40;Chapter 92. Preparation and Characterization of Urinary Sialoglycopeptide and Sialooligosaccharide with Phytochemagglutinin Inhibitory Activity on Cell Growth;578
9.40.1;PREPARATION;578
9.40.2;COMPOSITION AND STRUCTURE;579
9.40.3;BIOLOGICAL ACTIVITIES;581
9.40.4;DISCUSSION;582
9.40.5;REFERENCES;582
10;SECTION C: Techniques;584
10.1;Chapter 93. Theory and Practice of Automated Nephelometry;586
10.1.1;REFERENCES;595
10.2;Chapter 94. The Effects of Different Polymers for Enhancement of the Antigen—Antibody Reaction as Measured with Nephelometry;596
10.2.1;INTRODUCTION;596
10.2.2;MATERIAL AND METHODS;596
10.2.3;RESULTS;597
10.2.4;CONCLUSIONS;599
10.2.5;ACKNOWLEDGEMENT;600
10.2.6;REFERENCES;600
10.3;Chapter 95. A New Technique for the Immunoassay of Haptens: Nephelometric Inhibition Immunoassay (NINIA);602
10.3.1;INTRODUCTION;602
10.3.2;PRINCIPLE;602
10.3.3;MATERIAL AND METHODS;602
10.3.4;RESULTS AND DISCUSSION;603
10.3.5;CONCLUSION;607
10.3.6;REFERENCES;607
10.4;Chapter 96. Automated Nephelometric Analysis of Specific Serum Proteins: Clinical Applications;610
10.4.1;REFERENCES;620
10.5;Chapter 97. Automated Nephelometric Analysis of Low Density Lipoproteins;622
10.5.1;MATERIALS AND METHODS;622
10.5.2;EXPERIMENTAL;623
10.5.3;REPRODUCIBILITY;624
10.5.4;RESULTS;626
10.5.5;CONCLUSION;627
10.5.6;ACKNOWLEDGEMENT;627
10.5.7;REFERENCES;628
10.6;Chapter 98. A Convenient Method for the Study of Anticomplementary Substances in Biological Fluids;630
10.6.1;INTRODUCTION;630
10.6.2;LIGHT SCATTERING BY ERYTHROCYTE SUSPENSIONS;630
10.6.3;MATERIALS AND METHODS;630
10.6.4;RESULTS;631
10.6.5;DISCUSSION;633
10.6.6;REFERENCES;634
10.7;Chapter 99. New Trends in Radioimmunoassay;636
10.7.1;REFERENCES;640
10.8;Chapter 100. A Method to Increase the Usable Life of Radioiodine-Labeled LH;642
10.8.1;INTRODUCTION;642
10.8.2;MATERIALS AND METHOD;642
10.8.3;DISCUSSION;644
10.8.4;CONCLUSION;645
10.8.5;REFERENCES;645
10.9;Chapter 101. Radioimmunoassay in Non-Equilibrium Conditions;646
10.9.1;ABSTRACT;646
10.9.2;REFERENCES;650
10.10;Chapter 102. Radioimmunological Detection of HB Antigen by an Automated Method;652
10.10.1;POSITIVE – NEGATIVE – DOUBTFUL;653
10.11;Chapter 103. Big and Small Gastrins in Human Serum;654
10.11.1;ABSTRACT;654
10.11.2;INTRODUCTION;654
10.11.3;METHODS;654
10.11.4;RESULTS AND DISCUSSION;655
10.11.5;ACKNOWLEDGEMENTS;658
10.11.6;REFERENCES;658
10.12;Chapter 104. The Measurement of Protein-binding using Dried Polyacrylamide;660
10.12.1;METHODS;660
10.12.2;RESULTS AND DISCUSSION;660
10.12.3;REFERENCES;664
10.13;Chapter 105. Combined Use of Electroendosmosis-free Agarose Gel and Polyacrylamide Gel in some Electrophoretic Procedures;666
10.13.1;METHODS;666
10.13.2;RESULTS AND DISCUSSION;668
10.13.3;REFERENCES;669
10.14;Chapter 106. Gel Porosity and Chain Radius are Obtained from Chromatography by Using the Geometrical Gel Model;670
10.14.1;PORE RADII AND GEL CONCENTRATION;671
10.14.2;RADIUS OF THE POLYMER CHAIN;673
10.14.3;REFERENCES;673
10.15;Chapter 107. Analytical Isotachophoresis and Gel Electrofocusing of Synthetic Peptides;674
10.15.1;METHODS;674
10.15.2;MATERIALS;675
10.15.3;RESULTS;675
10.15.4;DISCUSSION;678
10.15.5;ACKNOWLEDGEMENTS;682
10.15.6;REFERENCES;682
10.16;Chapter 108. UV-Detection of both Absorbing and Non-Absorbing Ions in Analytical Isotachophoresis;684
10.16.1;INTRODUCTION;684
10.16.2;SEPARATION PRINCIPLE;684
10.16.3;EXPERIMENTAL;684
10.16.4;UV-DETECTION PRINCIPLE;685
10.16.5;DISCUSSION;688
10.16.6;REFERENCES;688
11;Author Index;690
12;Subject Index;692



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.