E-Book, Englisch, 698 Seiten
Progress in Filtration and Separation
1. Auflage 2014
ISBN: 978-0-12-398307-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 698 Seiten
ISBN: 978-0-12-398307-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Progress in Filtration and Separation contains reference content on fundamentals, core principles, technologies, processes, and applications. It gives detailed coverage of the latest technologies and research, models, applications and standards, practical implementations, case studies, best practice, and process selection. Extensive worked examples are included that cover basic calculations through to process design, including the effects of key variables. Techniques and topics covered include pervaporation, electrodialysis, ion exchange, magnetic (LIMS, HIMS, HGMS), ultrasonic, and more. - Solves the needs of university based researchers and R&D engineers in industry for high-level overviews of sub-topics within the solid-liquid separation field - Provides insight and understanding of new technologies and methods - Combines the expertise of several separations experts
Autoren/Hrsg.
Weitere Infos & Material
1;Front
Cover;1
2;Progress in Filtration and Separation;4
3;Copyright;5
4;CONTENTS;6
5;LIST OF CONTRIBUTORS;16
6;Chapter One - Hydrocyclones;20
6.1;NOMENCLATURE;21
6.2;1. BACKGROUND;22
6.3;2. BASIC DESIGN;24
6.4;3. CHARACTERIZATION OF PERFORMANCE;26
6.5;4. HYDROCYCLONE MODELS;28
6.6;5. SCALE-UP AND DESIGN;34
6.7;6. MONITORING AND CONTROL OF HYDROCYCLONES;35
6.8;7. FUTURE DEVELOPMENTS;38
6.9;REFERENCES;39
7;Section 1 Membrane filters;44
7.1;Chapter two - Dynamic Filtration with Rotating Disks, and Rotating or Vibrating Membranes;46
7.1.1;1. INTRODUCTION;47
7.1.2;2. REVIEW OF INDUSTRIAL DYNAMIC FILTRATION MODULES;50
7.1.3;3. CALCULATIONS OF INTERNAL FLUID DYNAMICS IN VARIOUS DYNAMIC FILTRATION MODULES;59
7.1.4;4. RECENT APPLICATIONS OF DYNAMIC FILTRATION AND INDUSTRIAL CASE STUDIES;61
7.1.5;5. DISCUSSION;73
7.1.6;6. CONCLUSIONS;75
7.1.7;REFERENCES;75
7.2;Chapter three - Membrane Distillation (MD);80
7.2.1;1. MEMBRANE DISTILLATION SEPARATION TECHNOLOGY AND ITS VARIANTS;81
7.2.2;2. MD MODULES AND FLUID FLOW;90
7.2.3;3. MD APPLICATIONS: FILTRATION AND SEPARATION;102
7.2.4;4. TIPS, REMARKS, AND FUTURE DIRECTIONS IN MD;110
7.2.5;Acknowledgments;111
7.2.6;REFERENCES;111
7.3;Chapter Four - Pervaporation;120
7.3.1;1. INTRODUCTION;120
7.3.2;2. FUNDAMENTALS OF PERVAPORATION;125
7.3.3;3. PERVAPORATION MEMBRANES;134
7.3.4;4. HYDROPHILIC PERVAPORATION: APPLICATIONS IN DEHYDRATION;140
7.3.5;5. HYDROPHOBIC PERVAPORATION;146
7.3.6;6. ORGANOPHILIC PERVAPORATION;148
7.3.7;7. HYBRID SYSTEMS;149
7.3.8;8. ETHANOL PURIFICATION AND PRODUCTION OF BIO-ETHANOL;154
7.3.9;9. PERVAPORATION MEMBRANE REACTORS;158
7.3.10;10. CONCLUSIONS;162
7.3.11;REFERENCES;163
7.4;Chapter Five - Liquid – Membrane Filters;174
7.4.1;1. INTRODUCTION;175
7.4.2;2. THEORETICAL BACKGROUND OF SOLUTE TRANSPORT THROUGH LM;176
7.4.3;3. MECHANISM OF TRANSPORT OF SOLUTE IN LM-BASED SEPARATION;178
7.4.4;4. TYPES OF TRANSPORT OF SOLUTE IN LM-BASED SEPARATION;181
7.4.5;5. CARRIER;185
7.4.6;6. SOLVENTS;189
7.4.7;7. TYPES OF LM;190
7.4.8;8. OPERATIONAL ISSUES RELATED TO LM-BASED SEPARATION UNIT;200
7.4.9;9. CASE STUDY;202
7.4.10;REFERENCES;221
7.5;Chapter Six - Electrodialysis;226
7.5.1;1. INTRODUCTION;227
7.5.2;2. ELECTRODIALYZER;229
7.5.3;3. CONTINUOUS (SINGLE-PASS) ELECTRODIALYSIS PROGRAM;237
7.5.4;4. BATCH ELECTRODIALYSIS PROGRAM;267
7.5.5;5. FEED-AND-BLEED ELECTRODIALYSIS PROGRAM;285
7.5.6;REFERENCES;301
8;Section 2 Force field assisted separators;304
8.1;Chapter Seven - Magnetic Techniques for Mineral Processing;306
8.1.1;1. INTRODUCTION TO MAGNETIC SEPARATION;306
8.1.2;2. MAGNETIC SEPARATION TECHNIQUES;310
8.1.3;3. CASE STUDIES ON MAGNETIC SEPARATIONS;335
8.1.4;4. FUTURE TRENDS IN MAGNETIC SEPARATION;340
8.1.5;5. CONCLUSIONS;342
8.1.6;REFERENCES;342
8.1.7;LIST OF RELEVANT WEB SITES;343
8.2;Chapter Eight - Electric (Electro/Dielectro-Phoretic)—Force Field Assisted Separators;344
8.2.1;NOMENCLATURE;345
8.2.2;1. INTRODUCTION;347
8.2.3;2. ELECTROPHORETIC AND ELECTROOSMOTIC TREATMENTS;348
8.2.4;3. DIELECTROPHORETIC TREATMENT;382
8.2.5;4. COMPARISON OF ELECTRICALLY ASSISTED SEPARATION PROCESSES;406
8.2.6;5. CONCLUSIONS;409
8.2.7;REFERENCES;410
8.3;Chapter Nine - Ultrasonic;418
8.3.1;1. INTRODUCTION;418
8.3.2;2. ORIGIN OF ULTRASONICALLY INDUCED EFFECTS;419
8.3.3;3. STANDING WAVE SEPARATION;422
8.3.4;4. ULTRASOUND ASSISTED SIEVING;424
8.3.5;5. POLISHING FILTRATION;426
8.3.6;6. SLUDGE DEWATERING;430
8.3.7;7. MEMBRANE FILTRATION;434
8.3.8;REFERENCES;437
8.3.9;LIST OF RELEVANT WEB SITES;440
9;Section 3 Membranes;442
9.1;Chapter Ten - Ion Exchange;444
9.1.1;1. ION EXCHANGE PROCESS;444
9.1.2;2. ION EXCHANGE MATERIALS;491
9.1.3;3. INDUSTRIAL APPLICATIONS OF ION EXCHANGE PROCESSES;497
9.1.4;REFERENCES;506
9.2;Chapter Eleven - Hot Gas Filters;518
9.2.1;1. INTRODUCTION;518
9.2.2;2. HOT GAS FILTRATION—ADVANTAGES/DISADVANTAGES;520
9.2.3;3. FILTER MEDIA FOR HOT GAS FILTRATION;521
9.2.4;4. SURFACE FILTRATION AND HOT GAS FILTER ELEMENT CLEANING;528
9.2.5;5. HOT GAS FILTER DESIGN;536
9.2.6;6. APPLICATIONS;540
9.2.7;7. CONCLUSIONS;542
9.2.8;REFERENCES;542
9.3;Chapter Twelve - Air Tabling—A Dry Gravity Solid–Solid Separation Technique;546
9.3.1;NOMENCLATURE;547
9.3.2;1. INTRODUCTION;549
9.3.3;2. APPLICATIONS OF AIR TABLING;550
9.3.4;3. APPARATUS;551
9.3.5;4. PRINCIPLES OF AIR TABLING;553
9.3.6;5. CASE STUDY: AIR TABLING OF PVC/PP MIXTURE;560
9.3.7;6. PERFORMANCE CURVE OF AIR TABLING;572
9.3.8;REFERENCES;574
9.4;Chapter Thirteen - Gas–Gas Separation by Membranes;576
9.4.1;NOMENCLATURE;577
9.4.2;INDICES;577
9.4.3;1. INTRODUCTION;578
9.4.4;2. MEMBRANE MODULES FOR GAS SEPARATION;579
9.4.5;3. PROCESS DESIGN;587
9.4.6;4. APPLICATIONS OF GAS PERMEATION PROCESSES;593
9.4.7;REFERENCES;603
9.5;Chapter Fourteen - Surface Area: Brunauer–Emmett–Teller (BET);604
9.5.1;1. INTRODUCTION;604
9.5.2;2. GAS–SOLID INTERFACE;605
9.5.3;3. SURFACE ADSORPTION PHENOMENA;606
9.5.4;4. BET SURFACE AREA MEASUREMENTS;609
9.5.5;5. SAMPLE PREPARATION;611
9.5.6;6. VOLUMETRIC GAS ADSORPTION TECHNIQUE;613
9.5.7;7. GRAVIMETRIC DYNAMIC VAPOUR SORPTION TECHNIQUE;615
9.5.8;8. CHROMATOGRAPHIC ADSORPTION TECHNIQUE;620
9.5.9;9. SUMMARY;626
9.5.10;REFERENCES;626
9.6;Chapter Fifteen - Particle Shape Characterization by Image Analysis;628
9.6.1;NOMENCLATURE;628
9.6.2;1. INTRODUCTION;629
9.6.3;2. IMAGE ACQUISITION;630
9.6.4;3. IMAGE TREATMENT;633
9.6.5;4. BASIC SIZE DESCRIPTORS;635
9.6.6;5. SHAPE DESCRIPTORS;637
9.6.7;6. TWINNED CRYSTALS AND AGGLOMERATES;639
9.6.8;7. FRACTAL-LIKE PARTICLES;640
9.6.9;8. BIOLOGICAL PARTICLES;643
9.6.10;9. CASE OF IN SITU IMAGES;645
9.6.11;10. SELECTION OF MAGNIFICATION;647
9.6.12;11. DISTRIBUTIONS;648
9.6.13;12. 3D SHAPE;651
9.6.14;13. CONCLUSIONS;652
9.6.15;REFERENCES;653
9.7;Chapter Sixteen - Turbidity: Measurement of Filtrate and Supernatant Quality?;656
9.7.1;1. IMPORTANCE OF PARTICULATES IN PROCESS AND MUNICIPAL WATERS;656
9.7.2;2. ADVANTAGES OF TURBIDITY MEASUREMENTS;658
9.7.3;3. TURBIDITY AS SURROGATE FOR PARTICLE CONCENTRATIONS;662
9.7.4;4. PRINCIPLES OF TURBIDITY MEASUREMENT;664
9.7.5;5. TURBIDITY INSTRUMENTS;666
9.7.6;6. INSTRUMENT CALIBRATION;671
9.7.7;7. TECHNIQUES FOR ACCURATE TURBIDITY MEASUREMENTS;673
9.7.8;REFERENCES;675
9.8;Chapter Seventeen - Capillary Suction Time (CST);678
9.8.1;1. INTRODUCTION;678
9.8.2;2. METHODS;679
9.8.3;3. FACTORS AFFECTING CST MEASUREMENTS;683
9.8.4;4. EXAMPLES OF CST USE;685
9.8.5;5. CONCLUSIONS;687
9.8.6;REFERENCES;687
10;INDEX;690
Dynamic Filtration with Rotating Disks, and Rotating or Vibrating Membranes
Abstract
This article describes various systems of dynamic filtration, also called shear-enhanced filtration, which consists in creating high shear rates at the membrane by a rotating disk, or by rotating or vibrating the membranes. This mode of operation permits to reach shear rates of the order of 1–3·105/s or almost one order of magnitude larger than in crossflow filtration and to increase both permeate flux and membrane selectivity. Its advantages and drawbacks relatively to crossflow modules are presented in the introduction. Then it describes existing industrial dynamic filtration modules: the VSEP vibrating system, multicompartments systems with metal disks or rotors rotating between fixed membranes and multishaft systems with overlapping rotating ceramic membranes. Equations permitting to calculate membrane shear rates in various modules, are presented, as they govern their performance. Recent applications published in the literature in microfiltration, ultrafiltration, nanofiltration, and reverse osmosis are presented with a comparison of permeate fluxes with crossflow filtration data when available. A comparison of performances between the vibrating VSEP and a rotating disk module in microfiltration of yeast suspensions and in reverse osmosis of model dairy effluent is also presented. The discussion is focused on energetic considerations and the complementarity between crossflow and dynamic filtration.
Keywords
Complementarity with; crossflow filtration; High shear filtration; Rotating disks; Rotating membranes; Vibrating membranes
Contents
1.1 Differences between Dynamic and Crossflow Filtration 29
1.2 Advantages and Limitations of Dynamic and Crossflow Filtrations 29
2. Review of Industrial Dynamic Filtration Modules 31
2.2 Multicompartments Systems with Rotating Disks or Rotors between Fixed Membranes 32
2.2.1 The DYNO Filter, BOKELA 32
2.2.2 The Optifilter CR, Metso Paper 33
2.3 Rotating Membrane Systems 33
2.3.1 Rotary Membrane System, SpinTek 33
2.3.2 Single-Shaft Disk Filter (SSDF), Novoflow 34
2.4 Other Developing Dynamic Filtration Modules 36
3. Calculations of Internal Fluid Dynamics in Various Dynamic Filtration Modules 40
3.1 Membrane Shear Rate and Pressure Distribution in Rotating Disk Modules with Fixed Membranes 40
3.2 Membrane Shear Rate in Vibrating Systems 41
3.2.1 Unsteady Membrane Shear Rate in VSEP Modules 41
4. Recent Applications of Dynamic Filtration and Industrial Case Studies 42
4.1.1 MF and UF Applications 42
4.1.2 NF and RO Applications 46
4.2 Applications of Rotating Disks and Rotating Membranes Modules 47
4.2.1 MF and UF Applications 47
4.2.2 Applications in NF and RO 52
5.1 Energetic Considerations 54
5.2 Complementarity of Crossflow and Dynamic Filtrations 55
References 56




