Rogers | Nessus Network Auditing | E-Book | sack.de
E-Book

E-Book, Englisch, 448 Seiten

Rogers Nessus Network Auditing


2. Auflage 2011
ISBN: 978-0-08-055865-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 448 Seiten

ISBN: 978-0-08-055865-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



The Updated Version of the Bestselling Nessus Book.

This is the ONLY Book to Read if You Run Nessus Across the Enterprise
Ever since its beginnings in early 1998, the Nessus Project has attracted security researchers from all walks of life. It continues this growth today. It has been adopted as a de facto standard by the security industry, vendor, and practitioner alike, many of whom rely on Nessus as the foundation to their security practices. Now, a team of leading developers have created the definitive book for the Nessus community.

* Perform a Vulnerability Assessment
Use Nessus to find programming errors that allow intruders to gain unauthorized access.

* Obtain and Install Nessus
Install from source or binary, set up up clients and user accounts, and update your plug-ins.

* Modify the Preferences Tab
Specify the options for Nmap and other complex, configurable components of Nessus.

* Understand Scanner Logic and Determine Actual Risk
Plan your scanning strategy and learn what variables can be changed.

* Prioritize Vulnerabilities
Prioritize and manage critical vulnerabilities, information leaks, and denial of service errors.

* Deal with False Positives
Learn the different types of false positives and the differences between intrusive and nonintrusive tests.

* Get Under the Hood of Nessus
Understand the architecture and design of Nessus and master the Nessus Attack Scripting Language (NASL).

* Scan the Entire Enterprise Network
Plan for enterprise deployment by gauging network bandwith and topology issues.

* Nessus is the premier Open Source vulnerability assessment tool, and has been voted the most popular Open Source security tool several times.

* The first edition is still the only book available on the product.

* Written by the world's premier Nessus developers and featuring a forword by the creator of Nessus, Renaud Deraison.

Rogers Nessus Network Auditing jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Adsorption of Metals by Geomedia;4
3;Copyright Page;5
4;Contents;6
5;Contributors;20
6;Preface;26
7;Chapter 1. Adsorption of Metals by Geomedia: Data Analysis, Modeling, Controlling Factors, and Related Issues;28
7.1;I. Introduction;29
7.2;II. Data Treatment and Presentation;33
7.3;III. Adsorption Models;38
7.4;IV. Artifact Effects;64
7.5;V. Variables;67
7.6;VI. Conclusions;87
7.7;References;88
8;Chapter 2. Uranium vI Adsorption on Model Minerals: Controlling Factors and Surface Complexation Modeling;102
8.1;I. Introduction;102
8.2;II. Aqueous Speciation and Sorption Modeling;104
8.3;III. Experimental;107
8.4;IV. Uranium Sorption on Model Minerals in NaNO3/CO2 Systems ;110
8.5;V. Effect of Trace Impurities on Uranium Sorption by Kaolinite ;115
8.6;VI. Effect of Complexing Ligands;118
8.7;VII. Summary;122
8.8;References;123
9;Chapter 3. Uranium VI Sorption onto Selected Mineral Surfaces: Key Geochemical Parameters;126
9.1;I. Introduction;127
9.2;II. Experimental Procedure;128
9.3;III. Experimental Results and Discussion;132
9.4;IV. Surface Complexation Model;145
9.5;V. Conclusions;154
9.6;References;155
10;Chapter 4. Studies of Neptunium V Sorption on Quartz, Clinoptilolite, Montmorillonite, and a-Alumina;158
10.1;I. Introduction;159
10.2;II. Experimental Procedure;160
10.3;III. Results and Discussion;162
10.4;IV. Conclusions;172
10.5;References;173
11;Chapter 5. Factors Affecting Trivalent f-element Adsorption to an Acidic Sandy Soil;176
11.1;I. Introduction;177
11.2;II. Materials and Methods;178
11.3;III. Results and Discussion;181
11.4;IV. Conclusions;189
11.5;References;189
12;Chapter 6. Lead Sorption, Chemically Enhanced Desorption, and Equilibrium Modeling in an Iron-Oxide-Coated Sand and Synthetic Groundwater System;192
12.1;I. Introduction;193
12.2;II. Materials and Methods;194
12.3;III. Results and Discussion;196
12.4;VI. Conclusion;205
12.5;References;206
13;Chapter 7. Uranium Sorption onto Natural Sands as a Function of Sediment Characteristics and Solution pH;208
13.1;I. Introduction;209
13.2;II. Experimental;209
13.3;III. Results and Discussion;211
13.4;IV. Conclusions;218
13.5;References;219
14;Chapter 8. Intraparticle Diffusion of Metal Contaminants in Amorphous Oxide Minerals;220
14.1;I. Introduction;220
14.2;II. Diffusion Processes;222
14.3;III. Conclusions;232
14.4;References;232
15;Chapter 9. Copper Sorption Kinetics and Sorption Hysteresis in Two Oxide-Rich Soils (Oxisols): Effect of Phosphate Pretreatment;236
15.1;I. Introduction;237
15.2;II. Materials and Methods;240
15.3;III. Results;245
15.4;IV. Discussion;250
15.5;References;253
16;Chapter 10. Influence of pH, Metal Concentration, and Soil Component Removal on Retention of Pb and Cu by an lUitic Soil;256
16.1;I. Introduction;257
16.2;II. Materials and Methods;259
16.3;III. Results and Discussions;263
16.4;IV. Concluding Remarks;277
16.5;References;278
17;Chapter 11. Immobilization of Pb by Hydroxylapatite;282
17.1;I. Introduction;282
17.2;II. Materials and Methods;284
17.3;III. Results and Discussion;287
17.4;IV. Conclusion;302
17.5;References;302
18;Chapter 12. Effect of Solid: Liquid Ratio on the Sorption of Sr2+ and Cs+ on Bentonite;304
18.1;I. Introduction;305
18.2;II. Materials and Methods;306
18.3;III. Results and Discussion;309
18.4;IV. Summary and Conclusions;315
18.5;References;315
19;Chapter 13. Adsorption of UVI and Citric Acid on Goethite, Gibbsite, and Kaolinite: Comparing Results for Binary and Ternary Systems;318
19.1;I. Background;319
19.2;II. Experimental Setup;321
19.3;III. Results and Discussion;326
19.4;IV. Conclusions;339
19.5;References;340
20;Chapter 14. Surface and Solution Speciation of Ag I in a Heterogeneous Ferrihydrite-Solution System with Thiosulfate;344
20.1;I. Environmental Chemistry and the Fate of Silver;345
20.2;II. Silver and Silver-Ligand Complex Sorption to Minerals ;346
20.3;III. Application of the Triple-Layer Surface Complexation Model ;346
20.4;IV. Detailing Pathways using Spectroscopy;356
20.5;References;357
21;Chapter 15. Extended X-Ray Absorption Fine Structure (EXAFS) Analysis of Aqueous Sr II Ion Sorption at Clay–Water Interfaces;360
21.1;I. Introduction;361
21.2;II. Experimental;363
21.3;III. Results and Discussion;366
21.4;IV. Conclusions;372
21.5;References;372
22;Chapter 16. Structure and Composition of UraniumvI Sorption Complexes at the Kaolinite-Water Interface;376
22.1;I. Introduction;377
22.2;II. Background;377
22.3;III. Experimental;382
22.4;IV. Results;386
22.5;V. Discussion;390
22.6;VI. Conclusions;394
22.7;References;395
23;Chapter 17. Surface Charge and Metal Sorption to Kaolinite;398
23.1;I. Introduction;398
23.2;II. Experimental Methods;399
23.3;III. Kaolinite Surface Charge;400
23.4;IV. Metal Sorption;406
23.5;V. Conclusions;407
23.6;References;408
24;Chapter 18. Molecular Models of Cesium Sorption on Kaolinite;410
24.1;I. Introduction;410
24.2;II. Kaolinite Structure and Surface Hydrolysis;411
24.3;III. Theoretical Basis for Computer Simulations;412
24.4;IV. Results and Discussion;416
24.5;V. Conclusions;424
24.6;References;425
25;Chapter 19. Sorption of Molybdenum on Oxides, Clay Minerals, and Soils: Mechanisms and Models;428
25.1;I. Introduction;429
25.2;II. Materials and Methods;430
25.3;III. Results and Discussion;438
25.4;IV. Summary;450
25.5;V. References;451
26;Chapter 20. Nonequilibrium and Nonlinear Sorption during Transport of Cadmium, Nickel, and Strontium through Subsurface Soils;454
26.1;I. Introduction;455
26.2;II. Materials and Methods;455
26.3;III. Results and Discussion;459
26.4;IV. Conclusions;468
26.5;References;469
27;Chapter 21. Fluorescence Quenching and Aluminum Adsorption to Organic Substances;472
27.1;I. Introduction;472
27.2;II. Equations to Interpret Fluorescence Measurements;475
27.3;III. Experimental Method;479
27.4;IV. Results;480
27.5;V. Conclusions;489
27.6;References;490
28;Chapter 22. Modeling of Competitive Ion Binding to Heterogeneous Materials with Affinity Distributions;494
28.1;I. Introduction;495
28.2;II. Variable Concentration for a Single Component;496
28.3;III. Variable Concentrations for Two Components;500
28.4;IV. Discussion;506
28.5;References;508
29;Chapter 23. Ion Binding to Humic Substances: Measurements, Models, and Mechanisms;510
29.1;I. Introduction;511
29.2;II. Basic Charging Behavior of Humic Substances;512
29.3;III. Heterogeneity Analysis;522
29.4;IV. pH-Dependent Metal Ion Binding;526
29.5;V. Conclusions;543
29.6;References;544
30;Chapter 24. Predictive Double-Layer Modeling of Metal Sorption in Mine-Drainage Systems;548
30.1;I. Introduction;549
30.2;II. Sorption Experiments and Modeling with Natural Materials ;550
30.3;III. Sorption Modeling at Diverse Mine-Drainage Sites;564
30.4;IV. Predictive Sorption Modeling for Mitigation and Remediation ;567
30.5;V. Conclusions;571
30.6;References;571
31;Epilogue: Priorities for Future Metal Adsorption Research;576
31.1;I. Integration and Synthesis of Existing Data;576
31.2;II. System Characterization;577
31.3;III. Principal Adsorbents;578
31.4;IV. Multimetal Data on Individual Adsorbents;579
31.5;V. Loading;580
31.6;VI. Surface Area, Site Density, and Metal Adsorption Density ;580
31.7;VII. Time Dependency;581
31.8;VIII. Additivity of Multiple Adsorbents;581
31.9;IX. Solids Concentration Effect;582
31.10;X. Nature of Surface Complexes and Mechanistic Modeling ;582
31.11;XI. Field-Scale Applications;583
31.12;XII. Summary;584
31.13;References;584
32;Appendix;588
33;Index;598


Contributors
The numbers in parentheses indicate the pages on which the authors’ contributions begin. Michael G. Almendarez     (131), Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, Texas 78238 Paul Anderson     (193), Department of Chemical and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 Sharon J. Anderson     (209), Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 488241 Janick F. Artiola     (427), Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721 Lisa Axe     (193), Department of Civil Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102 Mohammad F. Azizian     (165), Department of Civil, Construction, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331 M.F. Benedetti     (483), URA CNRS-1762, Laboratoire de Géochimie et Métallogénie, Université Curie, Paris, France F. Paul Bertetti     (99, 131), Cambrian Systems, Inc., San Antonio, Texas 78238 Michal Borkovec     (467), Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Schlieren, Switzerland Patrick V. Brady     (371, 383), Sandia National Laboratories, Albuquerque, New Mexico 87123 BrownGordon E., Jr.     (349), Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 Mark L. Brusseau     (427), Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721 A.L. Bryce     (149), University of Georgia, Savannah River Ecology Laboratory, Aiken, South Carolina2 Chia-Chen Chen     (333), Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109 Sue B. Clark     (149), University of Georgia, Savannah River Ecology Laboratory, Aiken, South Carolina3 Randall T. Cygan     (371, 383), Sandia National Laboratories, Albuquerque, New Mexico 87123 Harold S. Forster     (401), USDA-ARS, U.S. Salinity Laboratory, Riverside, California 92507 J. Gariboldi     (149), University of Georgia, Savannah River Ecology Laboratory, Aiken, South Carolina Sabine Goldberg     (401), USDA-ARS, U.S. Salinity Laboratory, Riverside, California 92507 Luiz Roberto G. Guilherme     (209), Department of Crop and Soil Sciences, Michigan State University, East Lansing, Michigan 488244 Kim F. Hayes     (333), Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109 Harold B. Hume     (277), AECL, Whiteshell Laboratories, Pinawa, Manitoba R0E 1L0, Canada Everett A. Jenne     (1, 549), Battelle, Pacific Northwest National Laboratory, Richland, Washington 993525
5 Retired D.G. Kinniburgh     (483), Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, The Netherlands6
6 On leave from the British Geological Survey, Wallingford, United Kingdom L.K. Koopal     (483), Department of Physical and Colloid Chemistry, Wageningen Agricultural University, The Netherlands James R. Kramer     (445), Department of Geology, McMaster University, Hamilton, Ontario, Canada L8S 4M1 Valérie Laperche     (255), School of Natural Resources, Ohio State University, Columbus, Ohio 43210 James O. Leckie     (291, 317), Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305 Jinhe Li     (291), Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305 A.D. Lueking     (149), University of Georgia, Savannah River Ecology Laboratory, Aiken, South Carolina7
7 Present address: Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan 48109 G.R. Lumpkin     (75), Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Australia Donald L. Macalady     (521), Department of Chemistry and Geochemistry, Colorado School of Mines, Denver, Colorado Elaine M. MacDonald     (229), Department of Civil Engineering, McGill University, Montreal, Canada Travis McLing     (181), Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho 83415 Kathryn L. Nagy     (371, 383), Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309 Peter O. Nelson     (165), Department of Civil, Construction, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331 Colin G. Ong     (317), Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305 Dennis W. Oscarson     (277), AECL, Whiteshell Laboratories, Pinawa, Manitoba R0E 1L0, Canada Roberto T. Pabalan     (99, 131), Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, Texas 78238 Charalambos Papelis     (333), Desert Research Institute, Water Resources Center, University and Community College System of Nevada, Las Vegas, Nevada 89119 George A. Parks     (349), Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 T.E. Payne     (75), Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Australia Geoffrey S. Plumlee     (521), U.S. Geological Survey, Denver, Colorado 80225 James D. Prikryl     (99), Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, Texas, 78238 H. Swantje Quarder     (181), Department of Chemistry, Idaho State University, Pocatello, Idaho 83209 James F. Ranville     (521), Department of Chemistry and Geochemistry, Colorado School of Mines, Denver, Colorado George Redden     (291), Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305 Jeffrey Rosentreter     (181), Department of Chemistry, Idaho State University, Pocatello, Idaho 83209 Ursula Rusch     (467), Institute of Terrestrial Ecology, Swiss Federal Institute of Technology, Schlieren, Switzerland S.M. Serkiz     (149), Westinghouse Savannah River Company, Savannah River Technology Center, Aiken, South Carolina D. Scott Smith     (445), Department of Geology, McMaster University, Hamilton, Ontario, Canada L8S 4M1 Kathleen S. Smith     (521), U.S. Geological Survey, Denver, Colorado 80225 Robert W. Smith     (181), Idaho National Engineering and...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.