Roy | Biomaterials as Stem Cell Niche | E-Book | sack.de
E-Book

E-Book, Englisch, Band 2, 309 Seiten, eBook

Reihe: Studies in Mechanobiology, Tissue Engineering and Biomaterials

Roy Biomaterials as Stem Cell Niche


1. Auflage 2010
ISBN: 978-3-642-13893-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 2, 309 Seiten, eBook

Reihe: Studies in Mechanobiology, Tissue Engineering and Biomaterials

ISBN: 978-3-642-13893-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Recent developments in stem cell biology have opened new directions in cell therapy. This book provides the state-of-the-art developments in using biomaterials as artificial niches for engineering stem cells, both for the purpose of better understanding their biology under 3D biomimetic conditions as well as for developing new strategies for efficient long term maintenance and directed differentiation of stem cells into various therapeutic lineages. Animal and human stem cells of both embryonic and adult origin are discussed with applications ranging from nerve regeneration, orthopedics, cardiovascular therapy, blood cell generation and cancer therapy. Both synthetic and natural biomaterials are reviewed with emphasis on how material-stem cell interactions direct specific signaling pathways and ultimately modulate the cell fate. This book is valuable for biomaterial scientists, tissue engineers, clinicians as well as stem cell biologists involved in basic research and applications of adult and embryonic stem cells.
Roy Biomaterials as Stem Cell Niche jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


1;Preface;5
2;Contents;7
3;Engineering ECM Complexity into Biomaterials for Directing Cell Fate;9
3.1;Abstract;9
3.2;1. Cell--ECM Interactions;9
3.2.1;1.1 ECM Composition and Signaling;10
3.2.2;1.2 ECM Regulation;11
3.2.2.1;1.2.1 Proteolytic Processing of the ECM;11
3.2.2.2;1.2.2 Mechanochemical Translation of Cell-binding ECM Domains;13
3.3;2. ECM and the Stem Cell Niche;16
3.3.1;2.1 Integrins: A Sign of ‘‘Stemness’’;16
3.3.2;2.2 Neural Stem Cells and Integrin/ECM Alterations;17
3.3.2.1;2.2.1 Integrin and ECM Profile During Neural Development;17
3.3.2.2;2.2.2 ECM and Integrin Profile in Adult Neural Stem Cell Niche;18
3.3.2.3;2.2.3 Functional Role of ECM/Integrin Interactions;19
3.4;3. Current Biomaterials Approaches;20
3.4.1;3.1 Biomimetic Approaches;20
3.4.2;3.2 Engineering Protein Variants;21
3.4.3;3.3 Future Directions for Biomaterials as Stem Cell Niches;22
3.5;References;23
4;Functional Biomaterials for Controlling Stem Cell Differentiation;27
4.1;Abstract;27
4.2;1. Introduction;28
4.2.1;1.1 Emergence of Stem Cell Engineering in Regenerative Medicine;28
4.2.2;1.2 Stem Cell Sources;28
4.3;2. Stem Cell Expansion and Differentiation Using Biomaterials;29
4.3.1;2.1 Roles of ECM in Stem Cell Differentiation;29
4.3.2;2.2 Mimicking ECM with Synthetic Biomaterials;30
4.3.2.1;2.2.1 Mimicking the Biophysical and Biochemical Properties of ECM;30
4.3.2.1.1;Functionalization of Synthetic Substrates with ECM Derived Ligands;31
4.3.2.2;2.2.2 Effects of the Cell--Matrix Interface;31
4.3.2.2.1;Surface Chemistry and Interfacial Energy;31
4.3.2.3;2.2.3 Mineralization of Matrix Materials;37
4.3.2.3.1;Mineralization of Polymeric Matrices;38
4.3.2.3.2;Effect of Mineralization on Cell Adhesion, Proliferation and Differentiation;38
4.3.2.4;2.2.4 Mechanical Properties;40
4.3.3;2.3 Biomaterial Based Delivery of Soluble Factors for 3D Cell Culture;40
4.3.3.1;2.3.1 Incorporation of Bioactive Agents into Matrix Materials;40
4.3.3.2;2.3.2 Effects of Controlled Delivery of Bioactive Agents on Stem Cell Differentiation;42
4.3.3.2.1;Delivery of Bioactive Agents to Embryonic Stem Cells;42
4.3.3.2.2;Tissue Specific Differentiation of Stem Cells Using Delivery of Bioactive Agents;44
4.3.4;2.4 In Vivo Applications;45
4.3.5;2.5 Future Perspectives;46
4.4;Acknowledgments;47
4.5;References;47
5;Integration of Biomaterials into 3D Stem Cell Microenvironments;53
5.1;Abstract;53
5.2;1. Introduction;53
5.2.1;1.1 Culture in Two or Three Dimensions;55
5.2.2;1.2 Strategies for Biomaterial Control of the 3D Microenvironment;55
5.3;2. Scaffolds;56
5.4;3. Encapsulation;59
5.5;4. Microcarriers and Microparticles;60
5.5.1;4.1 Microcarriers;61
5.5.2;4.2 Microparticles;61
5.6;5. Summary and Conclusions;63
5.7;References;63
6;Stem Cell Interaction with Topography;68
6.1;Abstract;68
6.2;1. Introduction;68
6.2.1;1.1 Extracellular Topography;69
6.2.2;1.2 Nanotopography;70
6.3;2. Nanofabrication Techniques;71
6.4;3. Stem Cells Reception to Topography;75
6.4.1;3.1 Embryonic Stem Cells;75
6.4.2;3.2 Neural Progenitor Cells/Neural Stem Cells;77
6.4.3;3.3 Mesenchymal Stem Cells;78
6.5;4. Making Sense of Physical Cues in the Extracellular Matrix: Mechanotransduction;81
6.5.1;4.1 Introduction to the ECM;81
6.5.2;4.2 Mechanotransduction: A Direct Connection?;82
6.5.3;4.3 Connecting with the ECM: Cell--Matrix Interactions;82
6.5.4;4.4 Integrins and Focal Adhesions: Inside Out and Outside In;84
6.5.5;4.5 Cytoskeleton: Force Transmission;85
6.5.5.1;4.5.1 Cell Exerting Forces on the Underlying Substrate;85
6.5.6;4.6 Filopodia: Probing the ECM;86
6.5.7;4.7 Nucleus: Gene Regulation;87
6.6;5. Conclusion;87
6.7;References;88
7;The Nanofiber Matrix as an Artificial Stem Cell Niche;95
7.1;Abstract;95
7.2;1. The Stem Cell Niche;95
7.3;2. Nanoscale Topography in the Extracellular Matrix;97
7.4;3. Methods to Generate Nanofibrous Matrices;98
7.4.1;3.1 Electrospinning;98
7.4.2;3.2 Self-assembly;100
7.4.3;3.3 Solution Phase Separation;102
7.4.4;3.4 Comparison of Nanofiber Generation Methods;104
7.5;4. Nanofibrous Matrices for Stem Cell Expansion;105
7.5.1;4.1 Nanofiber-mediated Expansion of Human Hematopoietic Stem Cells (HSCs);105
7.5.2;4.2 Nanofiber-mediated Expansion of Neural Stem Cells (NSCs);108
7.5.3;4.3 Nanofiber-mediated Expansion of Embryonic Stem Cells (ESCs);108
7.5.4;4.4 Nanofiber-mediated Expansion of Mesenchymal Stem Cells (MSCs);109
7.6;5. Nanofiber Matrices for Differentiation of Stem Cells;109
7.6.1;5.1 Nanofiber-mediated Stem Cell Differentiation into Neuronal Lineages;110
7.6.2;5.2 Nanofiber-mediated Stem Cell Differentiation into Chondrogenic and Osteogenic Lineages;112
7.6.3;5.3 Nanofiber-mediated Stem Cell Differentiation into Myogenic Lineage;114
7.7;6. Nanofibrous Matrices for Stem Cell Delivery;115
7.8;7. Summary;117
7.9;References;118
8;Micropatterned Hydrogels for Stem Cell Culture;125
8.1;Abstract;125
8.2;1. Introduction: Application of Biomaterial Technologies to Stem Cell Research;126
8.3;2. Stem Cells;128
8.3.1;2.1 MSC General Characteristics;128
8.3.2;2.2 MSC Differentiation and Plasticity;129
8.4;3. Hydrogels;130
8.4.1;3.1 Natural Versus Synthetic Polymers;131
8.4.2;3.2 Gelation Mechanisms;131
8.4.2.1;3.2.1 Radical Chain Polymerization;132
8.4.2.2;3.2.2 Chemical Cross-linking;132
8.4.3;3.3 Functionalization of Hydrogels;132
8.4.3.1;3.3.1 Biodegradable Hydrogels;132
8.4.3.2;3.3.2 Biomimetic hydrogels;133
8.5;4. Micropatterning;133
8.5.1;4.1 Microfabrication Technology;134
8.5.2;4.2 Applications in Hydrogel Patterning;135
8.5.2.1;4.2.1 Photolithography;135
8.5.2.2;4.2.2 Laser-scanning lithography;136
8.5.2.3;4.2.3 Stop-flow Lithography;137
8.5.2.4;4.2.4 Optofluidic Maskless Lithography;138
8.5.2.5;4.2.5 Photodegradation;139
8.5.2.6;4.2.6 Micromolding;140
8.5.2.7;4.2.7 Two-dimensional Templating;141
8.6;5. Micropatterning Hydrogels with Embedded Cells;141
8.6.1;5.1 Culture of One Cell Type;142
8.6.1.1;5.1.1 Cell Viability;142
8.6.1.2;5.1.2 Cell Migration (and Morphology);143
8.6.1.3;5.1.3 Cell Differentiation;145
8.6.2;5.2 Culture of Multiple Cell Types;145
8.6.2.1;5.2.1 Microfluidics;145
8.6.2.2;5.2.2 Bioreactors;147
8.6.2.3;5.2.3 Micromolding;147
8.6.2.4;5.2.4 Stop-flow Lithography;148
8.7;6…Future Outlook;148
8.8;References;149
9;Microengineering Approach for Directing Embryonic Stem Cell Differentiation;159
9.1;Abstract;159
9.2;1. Introduction;159
9.3;2. Control of the Cellular Microenvironment;161
9.3.1;2.1 Cell--cell Contacts;161
9.3.2;2.2 Cell--soluble Factor Interactions;162
9.3.3;2.3 Cell--extracellular Matrix Interactions;163
9.4;3. Microengineering the Environment;164
9.4.1;3.1 Microfluidic Platforms for Controlling Cell--soluble Factor Interactions;165
9.4.2;3.2 Controlled Microbioreactors;166
9.4.3;3.3 Surface Micropatterning for Controlling Cell--cell Contacts;167
9.4.4;3.4 High-throughput Microarrays for Screening Microenvironments;169
9.4.5;3.5 Three Dimensional Scaffolds for Culturing ESCs;170
9.4.6;3.6 Tissue Engineering Using Assembly of Microengineered Building Blocks;170
9.5;4. Conclusions;172
9.6;References;173
10;Biomaterials as Stem Cell Niche: Cardiovascular Stem Cells;178
10.1;Abstract;178
10.2;1. Introduction;179
10.3;2. Adult Cardiovascular Stem Cells and Their Niches;179
10.3.1;2.1 Cardiac Stem Cells;179
10.3.2;2.2 Endothelial Progenitor Cells;181
10.3.3;2.3 Mural Cell Progenitors/Mesenchymal Stem Cells;182
10.3.4;2.4 Adult Cardiovascular Stem Cell Niches;183
10.4;3. Biomaterials as Stem Cell Niches for 3D Cell Culture;184
10.4.1;3.1 3D Cell Culture Systems for Pluripotent Stem Cells;184
10.4.2;3.2 3D Cell Culture Systems for Adult Stem Cells;187
10.5;4. Biomaterials as Stem Cell Niches for Cardiac Cell Therapy;189
10.5.1;4.1 Cardiac Cell Therapy;189
10.5.2;4.2 Biomaterial Scaffolds for Cardiac Cell Therapy;190
10.6;5. Conclusions;192
10.7;References;193
11;The Integrated Role of Biomaterials and Stem Cells in Vascular Regeneration;199
11.1;Abstract;199
11.2;1. Introduction;200
11.3;2. Stem Cells for Vascular Regeneration;201
11.3.1;2.1 Vascular Development of ECs and SMCs from Pluripotent Stem Cells;201
11.3.2;2.2 Stem-cell-derived Vascular Cells;203
11.3.2.1;2.2.1 Stem-cell-derived ECs;203
11.3.2.1.1;Endothelial Progenitor Cells;205
11.3.2.1.2;ECs Derived from ESC and iPSC Populations;206
11.3.2.2;2.2.2 Stem-cell-derived SMCs;207
11.4;3. Biomimetic Scaffolds for Vascular Regeneration;208
11.4.1;3.1 General Requirements for Biomimetic Scaffolds;208
11.4.2;3.2 Polymeric Biomimetic Scaffolds;209
11.4.3;3.3 Scaffold Types;213
11.4.3.1;3.3.1 Hydrogels;213
11.4.3.2;3.3.2 Electrospun Fibers;213
11.4.3.3;3.3.3 Other Scaffolds;214
11.4.4;3.4 Vascular Engineering Scaffold Properties;214
11.4.4.1;3.4.1 Degradation Properties;214
11.4.4.2;3.4.2 Substrate Topography;215
11.4.4.3;3.4.3 Mechanical Stimulation;215
11.5;4. Inclusion of Vascular Stem and Somatic Cells into Biomaterials;216
11.5.1;4.1 Biomaterials to Engineer Blood Vessels;216
11.5.2;4.2 Biomaterials to Deliver Cells to Host Vasculature;217
11.5.3;4.3 Biomaterials to Induce Differentiation;217
11.6;5. Future Perspectives;218
11.7;6…Conclusion;219
11.8;References;219
12;Synthetic Niches for Stem Cell Differentiation into T cells;228
12.1;Abstract;228
12.2;1. Introduction;229
12.3;2. The T Cell Niche;230
12.3.1;2.1 T Cell Receptor Gene Rearrangement;232
12.3.2;2.2 T Cell Microenvironment;232
12.4;3. T Cell Differentiation Through Co-culture;234
12.5;4. T Cell Differentiation Through Immobilization of Notch Ligands;237
12.5.1;4.1 T Cell Differentiation Through Plate Immobilization;238
12.5.2;4.2 T Cell Differentiation Through Notch--Ligand Presenting Microbeads;240
12.6;5. Generation of Antigen-specific T Cells from Stem Cells;240
12.6.1;5.1 Retroviral Transduction of T Cell Receptors;241
12.6.2;5.2 T Cell Differentiation in a Three-dimensional Matrix;243
12.7;Acknowledgments;245
12.8;References;246
13;Understanding Hypoxic Environments: Biomaterials Approaches to Neural Stabilization and Regeneration after Ischemia;249
13.1;Abstract;249
13.2;1. Ischemic Brain Damage in Adult and Neonatal Humans;250
13.3;2. Response of NSPCs to Ischemic Brain Damage;250
13.4;3. NSPC Implants to Treat Ischemic Brain Damage;252
13.5;4. NSPC Isolation and Culture: State-of-the-Art;253
13.6;5. Biomaterials Use in NSPC Applications: State-of-the-Art;255
13.7;6. Current Challenges in Biomaterials for NSPC Applications;258
13.8;7. Potential of Biomaterials for Reverse-engineering NSPC Microenvironments;259
13.8.1;7.1 Neurosphere Culture;259
13.8.2;7.2 The Stem Cell Niche;260
13.8.3;7.3 ‘‘Physiological Hypoxia’’ and Hypoxic/Ischemic Injury;261
13.9;8. Conclusions;264
13.10;Acknowledgments;265
13.11;References;265
14;Biomaterial Applications in the Adult Skeletal Muscle Satellite Cell Niche: Deliberate Control of Muscle Stem Cells and Muscle Regeneration in the Aged Niche;277
14.1;Abstract;277
14.2;1. Introduction;278
14.3;2. Skeletal Muscle is Regenerated and Maintained by Muscle Stem Cells;280
14.3.1;2.1 Delta/Notch Signaling Leads to Activation and Proliferation of Satellite Cells;280
14.3.2;2.2 Wnt Signaling Cues Myogenic Progenitor Cells to Differentiate;280
14.4;3. The Aged Skeletal Muscle Niche Impairs Normal Regeneration: TGF- beta 1 Signaling Maintains Satellite Cell Quiescence and Leads to Scar Tissue Formation;282
14.5;4. Toolbox to Combat TGF- beta 1-induced Aging of Satellite Cell Niche;285
14.6;5. Biomaterials to the Rescue: Proposed Strategies for Adult Skeletal Muscle Regeneration;287
14.6.1;5.1 Engineering an In Vitro Niche for Robust Skeletal Muscle Regeneration;287
14.6.1.1;5.1.1 Alignment of In Vitro Skeletal Muscle Fibers;289
14.6.1.2;5.1.2 Effects of Synthetic Niche Stiffness on Skeletal Muscle Regeneration;290
14.6.1.3;5.1.3 Electrical Stimulation of Tissue-engineered Skeletal Muscle;290
14.6.1.4;5.1.4 Vascularization of Tissue-engineered Skeletal Muscle;291
14.6.1.5;5.1.5 Natural Skeletal Muscle Niches: Mimicking the In Vivo Environment;292
14.6.2;5.2 Biomaterial Strategies to Combat Aging of the Muscle Stem Cell Niche;294
14.6.2.1;5.2.1 Gene and Drug Delivery Methods to Promote Skeletal Muscle Regeneration;294
14.6.2.2;5.2.2 Novel Targeting Strategies for TGF- beta 1 Inhibition;295
14.6.2.2.1;A biomaterial platform for regulating TGF- beta 1 levels to ‘young’ levels in the aged niche;295
14.6.3;5.3 Satellite Cells and Muscle Stem Cells: Biomaterials to Help Determine Who is Who;297
14.6.4;5.4 Use of Biomaterials in Tissue Engineering Applications;299
14.7;6. Conclusion;299
14.8;Acknowledgments;299
14.9;References;299
15;Author Index;311



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.