E-Book, Englisch, Band 2, 309 Seiten, eBook
Reihe: Studies in Mechanobiology, Tissue Engineering and Biomaterials
Roy Biomaterials as Stem Cell Niche
1. Auflage 2010
ISBN: 978-3-642-13893-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 2, 309 Seiten, eBook
Reihe: Studies in Mechanobiology, Tissue Engineering and Biomaterials
ISBN: 978-3-642-13893-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;Engineering ECM Complexity into Biomaterials for Directing Cell Fate;9
3.1;Abstract;9
3.2;1. Cell--ECM Interactions;9
3.2.1;1.1 ECM Composition and Signaling;10
3.2.2;1.2 ECM Regulation;11
3.2.2.1;1.2.1 Proteolytic Processing of the ECM;11
3.2.2.2;1.2.2 Mechanochemical Translation of Cell-binding ECM Domains;13
3.3;2. ECM and the Stem Cell Niche;16
3.3.1;2.1 Integrins: A Sign of ‘‘Stemness’’;16
3.3.2;2.2 Neural Stem Cells and Integrin/ECM Alterations;17
3.3.2.1;2.2.1 Integrin and ECM Profile During Neural Development;17
3.3.2.2;2.2.2 ECM and Integrin Profile in Adult Neural Stem Cell Niche;18
3.3.2.3;2.2.3 Functional Role of ECM/Integrin Interactions;19
3.4;3. Current Biomaterials Approaches;20
3.4.1;3.1 Biomimetic Approaches;20
3.4.2;3.2 Engineering Protein Variants;21
3.4.3;3.3 Future Directions for Biomaterials as Stem Cell Niches;22
3.5;References;23
4;Functional Biomaterials for Controlling Stem Cell Differentiation;27
4.1;Abstract;27
4.2;1. Introduction;28
4.2.1;1.1 Emergence of Stem Cell Engineering in Regenerative Medicine;28
4.2.2;1.2 Stem Cell Sources;28
4.3;2. Stem Cell Expansion and Differentiation Using Biomaterials;29
4.3.1;2.1 Roles of ECM in Stem Cell Differentiation;29
4.3.2;2.2 Mimicking ECM with Synthetic Biomaterials;30
4.3.2.1;2.2.1 Mimicking the Biophysical and Biochemical Properties of ECM;30
4.3.2.1.1;Functionalization of Synthetic Substrates with ECM Derived Ligands;31
4.3.2.2;2.2.2 Effects of the Cell--Matrix Interface;31
4.3.2.2.1;Surface Chemistry and Interfacial Energy;31
4.3.2.3;2.2.3 Mineralization of Matrix Materials;37
4.3.2.3.1;Mineralization of Polymeric Matrices;38
4.3.2.3.2;Effect of Mineralization on Cell Adhesion, Proliferation and Differentiation;38
4.3.2.4;2.2.4 Mechanical Properties;40
4.3.3;2.3 Biomaterial Based Delivery of Soluble Factors for 3D Cell Culture;40
4.3.3.1;2.3.1 Incorporation of Bioactive Agents into Matrix Materials;40
4.3.3.2;2.3.2 Effects of Controlled Delivery of Bioactive Agents on Stem Cell Differentiation;42
4.3.3.2.1;Delivery of Bioactive Agents to Embryonic Stem Cells;42
4.3.3.2.2;Tissue Specific Differentiation of Stem Cells Using Delivery of Bioactive Agents;44
4.3.4;2.4 In Vivo Applications;45
4.3.5;2.5 Future Perspectives;46
4.4;Acknowledgments;47
4.5;References;47
5;Integration of Biomaterials into 3D Stem Cell Microenvironments;53
5.1;Abstract;53
5.2;1. Introduction;53
5.2.1;1.1 Culture in Two or Three Dimensions;55
5.2.2;1.2 Strategies for Biomaterial Control of the 3D Microenvironment;55
5.3;2. Scaffolds;56
5.4;3. Encapsulation;59
5.5;4. Microcarriers and Microparticles;60
5.5.1;4.1 Microcarriers;61
5.5.2;4.2 Microparticles;61
5.6;5. Summary and Conclusions;63
5.7;References;63
6;Stem Cell Interaction with Topography;68
6.1;Abstract;68
6.2;1. Introduction;68
6.2.1;1.1 Extracellular Topography;69
6.2.2;1.2 Nanotopography;70
6.3;2. Nanofabrication Techniques;71
6.4;3. Stem Cells Reception to Topography;75
6.4.1;3.1 Embryonic Stem Cells;75
6.4.2;3.2 Neural Progenitor Cells/Neural Stem Cells;77
6.4.3;3.3 Mesenchymal Stem Cells;78
6.5;4. Making Sense of Physical Cues in the Extracellular Matrix: Mechanotransduction;81
6.5.1;4.1 Introduction to the ECM;81
6.5.2;4.2 Mechanotransduction: A Direct Connection?;82
6.5.3;4.3 Connecting with the ECM: Cell--Matrix Interactions;82
6.5.4;4.4 Integrins and Focal Adhesions: Inside Out and Outside In;84
6.5.5;4.5 Cytoskeleton: Force Transmission;85
6.5.5.1;4.5.1 Cell Exerting Forces on the Underlying Substrate;85
6.5.6;4.6 Filopodia: Probing the ECM;86
6.5.7;4.7 Nucleus: Gene Regulation;87
6.6;5. Conclusion;87
6.7;References;88
7;The Nanofiber Matrix as an Artificial Stem Cell Niche;95
7.1;Abstract;95
7.2;1. The Stem Cell Niche;95
7.3;2. Nanoscale Topography in the Extracellular Matrix;97
7.4;3. Methods to Generate Nanofibrous Matrices;98
7.4.1;3.1 Electrospinning;98
7.4.2;3.2 Self-assembly;100
7.4.3;3.3 Solution Phase Separation;102
7.4.4;3.4 Comparison of Nanofiber Generation Methods;104
7.5;4. Nanofibrous Matrices for Stem Cell Expansion;105
7.5.1;4.1 Nanofiber-mediated Expansion of Human Hematopoietic Stem Cells (HSCs);105
7.5.2;4.2 Nanofiber-mediated Expansion of Neural Stem Cells (NSCs);108
7.5.3;4.3 Nanofiber-mediated Expansion of Embryonic Stem Cells (ESCs);108
7.5.4;4.4 Nanofiber-mediated Expansion of Mesenchymal Stem Cells (MSCs);109
7.6;5. Nanofiber Matrices for Differentiation of Stem Cells;109
7.6.1;5.1 Nanofiber-mediated Stem Cell Differentiation into Neuronal Lineages;110
7.6.2;5.2 Nanofiber-mediated Stem Cell Differentiation into Chondrogenic and Osteogenic Lineages;112
7.6.3;5.3 Nanofiber-mediated Stem Cell Differentiation into Myogenic Lineage;114
7.7;6. Nanofibrous Matrices for Stem Cell Delivery;115
7.8;7. Summary;117
7.9;References;118
8;Micropatterned Hydrogels for Stem Cell Culture;125
8.1;Abstract;125
8.2;1. Introduction: Application of Biomaterial Technologies to Stem Cell Research;126
8.3;2. Stem Cells;128
8.3.1;2.1 MSC General Characteristics;128
8.3.2;2.2 MSC Differentiation and Plasticity;129
8.4;3. Hydrogels;130
8.4.1;3.1 Natural Versus Synthetic Polymers;131
8.4.2;3.2 Gelation Mechanisms;131
8.4.2.1;3.2.1 Radical Chain Polymerization;132
8.4.2.2;3.2.2 Chemical Cross-linking;132
8.4.3;3.3 Functionalization of Hydrogels;132
8.4.3.1;3.3.1 Biodegradable Hydrogels;132
8.4.3.2;3.3.2 Biomimetic hydrogels;133
8.5;4. Micropatterning;133
8.5.1;4.1 Microfabrication Technology;134
8.5.2;4.2 Applications in Hydrogel Patterning;135
8.5.2.1;4.2.1 Photolithography;135
8.5.2.2;4.2.2 Laser-scanning lithography;136
8.5.2.3;4.2.3 Stop-flow Lithography;137
8.5.2.4;4.2.4 Optofluidic Maskless Lithography;138
8.5.2.5;4.2.5 Photodegradation;139
8.5.2.6;4.2.6 Micromolding;140
8.5.2.7;4.2.7 Two-dimensional Templating;141
8.6;5. Micropatterning Hydrogels with Embedded Cells;141
8.6.1;5.1 Culture of One Cell Type;142
8.6.1.1;5.1.1 Cell Viability;142
8.6.1.2;5.1.2 Cell Migration (and Morphology);143
8.6.1.3;5.1.3 Cell Differentiation;145
8.6.2;5.2 Culture of Multiple Cell Types;145
8.6.2.1;5.2.1 Microfluidics;145
8.6.2.2;5.2.2 Bioreactors;147
8.6.2.3;5.2.3 Micromolding;147
8.6.2.4;5.2.4 Stop-flow Lithography;148
8.7;6…Future Outlook;148
8.8;References;149
9;Microengineering Approach for Directing Embryonic Stem Cell Differentiation;159
9.1;Abstract;159
9.2;1. Introduction;159
9.3;2. Control of the Cellular Microenvironment;161
9.3.1;2.1 Cell--cell Contacts;161
9.3.2;2.2 Cell--soluble Factor Interactions;162
9.3.3;2.3 Cell--extracellular Matrix Interactions;163
9.4;3. Microengineering the Environment;164
9.4.1;3.1 Microfluidic Platforms for Controlling Cell--soluble Factor Interactions;165
9.4.2;3.2 Controlled Microbioreactors;166
9.4.3;3.3 Surface Micropatterning for Controlling Cell--cell Contacts;167
9.4.4;3.4 High-throughput Microarrays for Screening Microenvironments;169
9.4.5;3.5 Three Dimensional Scaffolds for Culturing ESCs;170
9.4.6;3.6 Tissue Engineering Using Assembly of Microengineered Building Blocks;170
9.5;4. Conclusions;172
9.6;References;173
10;Biomaterials as Stem Cell Niche: Cardiovascular Stem Cells;178
10.1;Abstract;178
10.2;1. Introduction;179
10.3;2. Adult Cardiovascular Stem Cells and Their Niches;179
10.3.1;2.1 Cardiac Stem Cells;179
10.3.2;2.2 Endothelial Progenitor Cells;181
10.3.3;2.3 Mural Cell Progenitors/Mesenchymal Stem Cells;182
10.3.4;2.4 Adult Cardiovascular Stem Cell Niches;183
10.4;3. Biomaterials as Stem Cell Niches for 3D Cell Culture;184
10.4.1;3.1 3D Cell Culture Systems for Pluripotent Stem Cells;184
10.4.2;3.2 3D Cell Culture Systems for Adult Stem Cells;187
10.5;4. Biomaterials as Stem Cell Niches for Cardiac Cell Therapy;189
10.5.1;4.1 Cardiac Cell Therapy;189
10.5.2;4.2 Biomaterial Scaffolds for Cardiac Cell Therapy;190
10.6;5. Conclusions;192
10.7;References;193
11;The Integrated Role of Biomaterials and Stem Cells in Vascular Regeneration;199
11.1;Abstract;199
11.2;1. Introduction;200
11.3;2. Stem Cells for Vascular Regeneration;201
11.3.1;2.1 Vascular Development of ECs and SMCs from Pluripotent Stem Cells;201
11.3.2;2.2 Stem-cell-derived Vascular Cells;203
11.3.2.1;2.2.1 Stem-cell-derived ECs;203
11.3.2.1.1;Endothelial Progenitor Cells;205
11.3.2.1.2;ECs Derived from ESC and iPSC Populations;206
11.3.2.2;2.2.2 Stem-cell-derived SMCs;207
11.4;3. Biomimetic Scaffolds for Vascular Regeneration;208
11.4.1;3.1 General Requirements for Biomimetic Scaffolds;208
11.4.2;3.2 Polymeric Biomimetic Scaffolds;209
11.4.3;3.3 Scaffold Types;213
11.4.3.1;3.3.1 Hydrogels;213
11.4.3.2;3.3.2 Electrospun Fibers;213
11.4.3.3;3.3.3 Other Scaffolds;214
11.4.4;3.4 Vascular Engineering Scaffold Properties;214
11.4.4.1;3.4.1 Degradation Properties;214
11.4.4.2;3.4.2 Substrate Topography;215
11.4.4.3;3.4.3 Mechanical Stimulation;215
11.5;4. Inclusion of Vascular Stem and Somatic Cells into Biomaterials;216
11.5.1;4.1 Biomaterials to Engineer Blood Vessels;216
11.5.2;4.2 Biomaterials to Deliver Cells to Host Vasculature;217
11.5.3;4.3 Biomaterials to Induce Differentiation;217
11.6;5. Future Perspectives;218
11.7;6…Conclusion;219
11.8;References;219
12;Synthetic Niches for Stem Cell Differentiation into T cells;228
12.1;Abstract;228
12.2;1. Introduction;229
12.3;2. The T Cell Niche;230
12.3.1;2.1 T Cell Receptor Gene Rearrangement;232
12.3.2;2.2 T Cell Microenvironment;232
12.4;3. T Cell Differentiation Through Co-culture;234
12.5;4. T Cell Differentiation Through Immobilization of Notch Ligands;237
12.5.1;4.1 T Cell Differentiation Through Plate Immobilization;238
12.5.2;4.2 T Cell Differentiation Through Notch--Ligand Presenting Microbeads;240
12.6;5. Generation of Antigen-specific T Cells from Stem Cells;240
12.6.1;5.1 Retroviral Transduction of T Cell Receptors;241
12.6.2;5.2 T Cell Differentiation in a Three-dimensional Matrix;243
12.7;Acknowledgments;245
12.8;References;246
13;Understanding Hypoxic Environments: Biomaterials Approaches to Neural Stabilization and Regeneration after Ischemia;249
13.1;Abstract;249
13.2;1. Ischemic Brain Damage in Adult and Neonatal Humans;250
13.3;2. Response of NSPCs to Ischemic Brain Damage;250
13.4;3. NSPC Implants to Treat Ischemic Brain Damage;252
13.5;4. NSPC Isolation and Culture: State-of-the-Art;253
13.6;5. Biomaterials Use in NSPC Applications: State-of-the-Art;255
13.7;6. Current Challenges in Biomaterials for NSPC Applications;258
13.8;7. Potential of Biomaterials for Reverse-engineering NSPC Microenvironments;259
13.8.1;7.1 Neurosphere Culture;259
13.8.2;7.2 The Stem Cell Niche;260
13.8.3;7.3 ‘‘Physiological Hypoxia’’ and Hypoxic/Ischemic Injury;261
13.9;8. Conclusions;264
13.10;Acknowledgments;265
13.11;References;265
14;Biomaterial Applications in the Adult Skeletal Muscle Satellite Cell Niche: Deliberate Control of Muscle Stem Cells and Muscle Regeneration in the Aged Niche;277
14.1;Abstract;277
14.2;1. Introduction;278
14.3;2. Skeletal Muscle is Regenerated and Maintained by Muscle Stem Cells;280
14.3.1;2.1 Delta/Notch Signaling Leads to Activation and Proliferation of Satellite Cells;280
14.3.2;2.2 Wnt Signaling Cues Myogenic Progenitor Cells to Differentiate;280
14.4;3. The Aged Skeletal Muscle Niche Impairs Normal Regeneration: TGF- beta 1 Signaling Maintains Satellite Cell Quiescence and Leads to Scar Tissue Formation;282
14.5;4. Toolbox to Combat TGF- beta 1-induced Aging of Satellite Cell Niche;285
14.6;5. Biomaterials to the Rescue: Proposed Strategies for Adult Skeletal Muscle Regeneration;287
14.6.1;5.1 Engineering an In Vitro Niche for Robust Skeletal Muscle Regeneration;287
14.6.1.1;5.1.1 Alignment of In Vitro Skeletal Muscle Fibers;289
14.6.1.2;5.1.2 Effects of Synthetic Niche Stiffness on Skeletal Muscle Regeneration;290
14.6.1.3;5.1.3 Electrical Stimulation of Tissue-engineered Skeletal Muscle;290
14.6.1.4;5.1.4 Vascularization of Tissue-engineered Skeletal Muscle;291
14.6.1.5;5.1.5 Natural Skeletal Muscle Niches: Mimicking the In Vivo Environment;292
14.6.2;5.2 Biomaterial Strategies to Combat Aging of the Muscle Stem Cell Niche;294
14.6.2.1;5.2.1 Gene and Drug Delivery Methods to Promote Skeletal Muscle Regeneration;294
14.6.2.2;5.2.2 Novel Targeting Strategies for TGF- beta 1 Inhibition;295
14.6.2.2.1;A biomaterial platform for regulating TGF- beta 1 levels to ‘young’ levels in the aged niche;295
14.6.3;5.3 Satellite Cells and Muscle Stem Cells: Biomaterials to Help Determine Who is Who;297
14.6.4;5.4 Use of Biomaterials in Tissue Engineering Applications;299
14.7;6. Conclusion;299
14.8;Acknowledgments;299
14.9;References;299
15;Author Index;311