E-Book, Englisch, Band 103, 218 Seiten, eBook
Reihe: Studies in Big Data
Roy / Taguchi Handbook of Machine Learning Applications for Genomics
1. Auflage 2022
ISBN: 978-981-16-9158-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 103, 218 Seiten, eBook
Reihe: Studies in Big Data
ISBN: 978-981-16-9158-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Local and global characterization of genomic data.- DNA sequencing using RNN.- Deep learning to study functional activities of DNA sequence.- Autoencoders for gene clastering.- Dimension reduction in gene expression using deep learning.- To predict DNA methylation states using deep learning.- Transfer learning in genomics.- CNN model to analyze gene expression images.- Gene expression Prediction using advanced machine learning.- Predicting splicing regulation using deep learning.- Transcription factor binding site prediction using deep learning.- Deep learning for prediction of structural classification of proteins.- Prediction of secondary strucure of RNA using advanced machine learning and deep learning.- Deep learning for pepositioning of drug and pharmacogenomics.