E-Book, Englisch, 273 Seiten, Web PDF
Rynne / Youngson Linear Functional Analysis
Erscheinungsjahr 2013
ISBN: 978-1-4471-3655-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 273 Seiten, Web PDF
Reihe: Springer Undergraduate Mathematics Series
ISBN: 978-1-4471-3655-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This introduction to the ideas and methods of linear functional analysis shows how familiar and useful concepts from finite-dimensional linear algebra can be extended or generalized to infinite-dimensional spaces. Aimed at advanced undergraduates in mathematics and physics, the book assumes a standard background of linear algebra, real analysis (including the theory of metric spaces), and Lebesgue integration, although an introductory chapter summarizes the requisite material. Highlights of the second edition include a new chapter on the Hahn-Banach theorem and its applications to the theory of duality. This chapter also introduces the basic properties of projection operators on Banach spaces, and weak convergence of sequences in Banach spaces. To begin with, the text develops the theory of infinite-dimensional normed spaces, in particular Hilbert spaces, moving on to study operators between such spaces. The final chapters discuss the particularly important areas of integral and differential equations.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
1. Preliminaries.- 2. Normed Spaces.- 3. Inner Product Spaces, Hilbert Spaces.- 4. Linear Operators.- 5. Linear Operators on Hilbert Spaces.- 6. Compact Operators.- 7. Integral and Differential Equations.- 8. Solutions to Exercises.- Further Reading.- References.- Notation Index.