E-Book, Englisch, Band Volume 59, 272 Seiten, Web PDF
Sariaslani Advances in Applied Microbiology
1. Auflage 2011
ISBN: 978-0-08-046328-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band Volume 59, 272 Seiten, Web PDF
Reihe: Advances in Applied Microbiology
            ISBN: 978-0-08-046328-5 
            Verlag: Elsevier Science & Techn.
            
 Format: PDF
    Kopierschutz: 1 - PDF Watermark
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in Microbiology.The series contains comprehensive reviews of the most current research in applied microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.Eclectic volumes are supplemented by thematic volumes on various topics including Archaea and Sick Building Syndrome.Impact factor for 2003: 1.893
Autoren/Hrsg.
Weitere Infos & Material
1;Cover Page;1
2;Contents;6
3;Chapter 1: Biodegradation by Members of the Genus Rhodococcus: Biochemistry, Physiology, and Genetic Adaptation;9
3.1;I. Introduction;9
3.2;II. General Features of Rhodococci: Taxonomy and Diversity;11
3.3;III. Biodegradation Capabilities;12
3.3.1;A. Overview of Catabolic Range;12
3.3.2;B. Physiological Attributes;13
3.3.3;C. Role of Dehalogenases;14
3.3.4;D. Biodegradation of Nitroaromatic and Heterocyclic Compounds.;15
3.3.5;E. The Role of Oxygenases;16
3.3.6;F. Fuel Oxygenates and Ether Bonds;18
3.4;IV. Environmental Distribution and the Significance of Gene Transfer;19
3.5;V. Genetic Basis of Biodegradation Capability;20
3.5.1;A. Genome Size and Composition;20
3.5.2;B. Catabolic Plasmids;21
3.5.3;C. Genetic Adaptation, Gene Transfer, and Recombination;22
3.5.4;D. Gene Regulation;24
3.6;VI. Conclusions and Prospects;25
3.7;References;26
4;Chapter 2: Genomes as Resources for Biocatalysis;39
4.1;I. Introduction;39
4.2;II. Yeast Dehydrogenase Gene Identification;41
4.3;III. Expression and Isolation of Yeast Dehydrogenases;42
4.4;IV. Characterization of Yeast Dehydrogenases;43
4.4.1;A. Results from Ethyl Acetoacetates;45
4.4.2;B. Results from Higher Homologs;48
4.4.3;C. Synthetic Applications;51
4.4.3.1;1. Taxolwreg Side-Chain Antipodes;51
4.4.3.2;2. Bestatin;54
4.5;V. Conclusions and Future Directions;54
4.6;Acknowledgments;56
4.7;References;57
5;Chapter 3: Process and Catalyst Design Objectives for Specific Redox Biocatalysis;61
5.1;I. Introduction;61
5.2;II. Gene Expression;63
5.2.1;A. Promoters;64
5.2.2;B. Limitations of Protein Overproduction;67
5.3;III. Cell Metabolism;68
5.3.1;A. Avoidance of Side-Product Formation;69
5.3.2;B. Use of Recombinant Host Strains;70
5.4;IV. Cofactor Availability;71
5.5;V. Oxygen Transfer;75
5.6;VI. Catalyst Stability and Inactivation;77
5.6.1;A. Two-Liquid-Phase Biotransformation;78
5.6.2;B. Application of Solvent-Tolerant Bacteria in Two-Liquid-Phase Biotransformations;81
5.6.2.1;1. Mechanisms of Solvent Tolerance;81
5.6.2.2;2. Suitability of Solvent-Tolerant Strains for Industrial Applications;84
5.7;VII. Conclusions and Future Prospects;86
5.8;Acknowledgments;87
5.9;References;87
6;Chapter 4: The Biosynthesis of Polyketide Metabolites by Dinoflagellates;101
6.1;I. Introduction;101
6.2;II. Recently Discovered Dinoflagellate Polyketides;105
6.2.1;A. From Protoperidinium crassipes;106
6.2.2;B. From Karenia brevis;106
6.2.3;C. From Prorocentrum and Dinophysis;108
6.2.4;D. From Protoceratium reticulatum;108
6.2.5;E. From Amphidinium sp.;109
6.2.6;F. Other;111
6.3;III. Stable Isotope Incorporation Experiments;113
6.3.1;A. Amphidinolides;113
6.3.2;B. Amphidinols;116
6.3.3;C. Dinophysis Toxins;117
6.3.4;D. Yessotoxin;118
6.4;IV. Polyketide Biosynthesis at the Molecular Level;118
6.5;V. Current Methods for Isolating Dinoflagellate Genes;122
6.6;VI. Conclusions;126
6.7;Acknowledgments;126
6.8;References;126
7;Chapter 5: Biological Halogenation has Moved far Beyond Haloperoxidases;135
7.1;I. Introduction;135
7.2;II. Haloperoxidases and Perhydrolases;138
7.2.1;A. Haloperoxidases;138
7.2.1.1;1. Heme Haloperoxidases;138
7.2.1.2;2. Vanadium Haloperoxidases;141
7.2.2;B. Perhydrolases;141
7.3;III. Flavin-Dependent Halogenases;143
7.3.1;A. Detection of Flavin-Dependent Halogenases;144
7.3.2;B. Distribution of Flavin-Dependent Halogenases and Their Natural Substrates;146
7.3.3;C. Reaction Mechanism and Three-Dimensional Structure of Flavin-Dependent Halogenases;150
7.4;IV. alpha-Ketoglutarate-Dependent Halogenases;154
7.5;V. Fluorinase;156
7.6;VI. Methyl Transferases;157
7.7;VII. Halogenating Enzymes in Biotechnology;157
7.8;References;159
8;Chapter 6: Phage for Rapid Detection and Control of Bacterial Pathogens in Food;167
8.1;I. Introduction;167
8.2;II. Phage Typing;168
8.3;III. Rapid-Detection Methods;170
8.3.1;A. Labeled Phage;171
8.3.2;B. Reporter Phage;172
8.3.3;C. Use of Phage in Other Rapid Methods;175
8.4;IV. Phage in Hygiene-Monitoring Tests;179
8.5;V. Perspective;180
8.6;VI. Control of Bacteria in Food;181
8.6.1;A. Listeria monocytogenes;182
8.6.2;B. Escherichia coli O157:H7;184
8.6.3;C. Salmonella;185
8.6.4;D. Campylobacter;186
8.6.5;E. Control of Food Spoilage Organisms;188
8.7;VII. Concluding Remarks;188
8.8;References;189
9;Chapter 7: Gastrointestinal Microflora: Probiotics;195
9.1;I. Introduction;195
9.2;II. The Human Gastrointestinal Microflora;195
9.3;III. Probiotic History;198
9.4;IV. Definition of Probiotics;199
9.5;V. Microorganisms Currently Used as Probiotics;200
9.6;VI. Selection Criteria for Probiotic Bacteria;201
9.7;VII. Lactose Intolerance;203
9.8;VIII. Atopic Disorders;205
9.9;IX. Treatment and Prevention of Diarrhea;206
9.9.1;A. Antibiotic Associated Diarrhea;206
9.9.2;B. Infectious Diarrhea;209
9.9.3;C. Traveler's Diarrhea;209
9.10;X. Ulcerative Colitis and Pouchitis;212
9.11;XI. Irritable Bowel Syndrome;215
9.12;XII. Probiotics Against Urogenital Tract Infections;216
9.13;XIII. Helicobacter pylori Infection;217
9.14;XIV. Future Perspectives;219
9.15;References;220
10;Chapter 8: The Role of Helen Purdy Beale in the Early Development of Plant Serology and Virology;229
10.1;I. Introduction;229
10.2;II. Critical Years at the Boyce Thompson Institute;231
10.3;III. Beale's Later Work;239
10.4;IV. Beale's Legacy;243
10.5;Acknowledgments;245
10.6;References;246
11;Index;251
12;Contents of Previous Volumes;261





