E-Book, Englisch, 303 Seiten, Web PDF
Seiyama Chemical Sensor Technology
1. Auflage 2013
ISBN: 978-1-4832-9170-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Volume 2
E-Book, Englisch, 303 Seiten, Web PDF
ISBN: 978-1-4832-9170-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The subjects chosen for this second volume have been carefully selected by the international editorial board to cover new, important progress in this fast-developing field. With contributions from many prominent researchers working at the frontiers of the chemical sensor field, the book provides up-to-date information and inspiration to all readers.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Chemical Sensor Technology;4
3;Copyright Page;5
4;Table of Contents;12
5;Editorial Board;6
6;List of Contributors;8
7;Preface;10
8;Chapter 1. Palladium Gate Hydrogen Sensors;18
8.1;1. Introduction;18
8.2;2. Devices;19
8.3;3. Summary of Experimental Results for Hydrogen;21
8.4;4. Model for the Hydrogen Sensitivity;27
8.5;5. Other Hydrogen-Containing Gases;30
8.6;6. Detection of Oxygen;31
8.7;7. Other Gate Metals;32
8.8;8. Concluding Remarks;35
8.9;ACKNOWLEDGMENTS;36
8.10;References;36
9;Chapter 2. Properties of Pd–Gate Heterostructure Diodes for Hydrogen Detection;38
9.1;1. Introduction;38
9.2;2. Device Configurations and Detection Mechanisms;39
9.3;3. I–V Characteristics of Pd-Gate MS, MIS, and MIM Heterostructure Diodes;44
9.4;4. Kinetic Response;47
9.5;5. Sensitivity;49
9.6;6. Effect of Temperature;51
9.7;7. Effect of Other Gases in the Ambient on Hydrogen Detection;53
9.8;8. Operating Bias Dependence of the Sensitivity;55
9.9;9. Summary;56
9.10;ACKNOWLEDGMENTS;57
9.11;References;57
10;Chapter 3. Fabrication of Integrated Thin Film Semiconductor Gas Sensors;60
10.1;1. Introduction;60
10.2;2. The Thin Sensitive Film;62
10.3;3. The Silicon Gas Sensor Structure;63
10.4;4. Experimental Results;70
10.5;ACKNOWLEDGMENTS;74
10.6;References;74
11;Chapter 4. Ozone Detection by ln2 O3 Thin Film Gas Sensor;76
11.1;1. Introduction;76
11.2;2. Semiconductor O3 Gas Sensor;77
11.3;3. In2O3 Thin Film Type O3 Gas Sensor;78
11.4;4. Summary;86
11.5;References;86
12;Chapter 5. Stability of the Sensitivity of SnO2–Based Elements in the Field;88
12.1;1. Introduction;88
12.2;2. Principle and Structure of the Gas Leakage Detector;89
12.3;3. Working Conditions of SnO2 Sensor in the Field;90
12.4;4. "Hypersensitivity";92
12.5;5. Cause of "Hypersensitivity";94
12.6;6. Conclusions;98
12.7;ACKNOWLEDGMENTS;99
12.8;References;99
13;Chapter 6. Air/Fuel Ratio Sensors Using Perovskite–type Oxides;100
13.1;1. Introduction;100
13.2;2. General Principle;101
13.3;3. Stoichiometric A/F Sensor;103
13.4;4. Lean-burn Oxygen Sensor;107
13.5;5. Summary;114
13.6;References;114
14;Chapter 7. Electropolymerized Films as Chemical Sensor Materials;116
14.1;1. Introduction;116
14.2;2. Electrochemical Polymerization;116
14.3;3. Permselectivity;119
14.4;4. Ion-Exchange Properties;122
14.5;5. Electron Mediation and Electrocatalysis;124
14.6;6. Ion-Selective Electrodes;126
14.7;7. Glucose Sensor;129
14.8;8. Gate Film of FETs;131
14.9;9. Usage of Doping and Undoping;131
14.10;10. Future Prospects;132
14.11;ACKNOWLEDGMENTS;132
14.12;References;133
15;Chapter 8.
Design of Polymer Electrolytes-Based Humidity Sensors;134
15.1;1. Introduction;134
15.2;2. Sensors Utilizing Homopolymers;134
15.3;3. Sensors Utilizing Random Copolymers;138
15.4;4. Sensors Utilizing Crosslinked Polymers;140
15.5;5. Sensors Utilizing Graft Copolymers;144
15.6;6. Mechanism of Electrical Conduction in the Humidity Sensor Based on Polymer Electrolytes;147
15.7;7. Conclusion;148
15.8;References;149
16;Chapter 9. Humidity Sensor Using TiO2–SnO2 Ceramics;150
16.1;1. Introduction;150
16.2;2. Ceramic Humidity Sensors;151
16.3;3. Thick Film Type TiO2–SnO2 Ceramic Humidity Sensor;152
16.4;4. Disk Type TiO2–SnO2 Ceramic Humidity Sensor;155
16.5;5. Some Remarks on TiO2–SnO2 Ceramic Humidity Sensors;160
16.6;6. Conclusions;165
16.7;ACKNOWLEDGMENTS;166
16.8;References;166
17;Chapter 10. Electrode Reactions in Potentiometric Gas Sensor;168
17.1;1. Introduction;168
17.2;2. Wagner's Description and Bulk Reactivity;169
17.3;3. Surface Reactivity;174
17.4;4. Descriptions Based on Conventional Electrochemistry;178
17.5;5. Catalytic Electrodes;183
17.6;References;187
18;Chapter 11. Development of ISFET Using Glassy Solid Electrolytes;190
18.1;1. Introduction;190
18.2;2. Experimental;193
18.3;3. Results and Discussion;194
18.4;4. Conclusion;204
18.5;ACKNOWLEDGMENTS;205
18.6;References;205
19;Chapter 12. Integrated Multibiosensors Fabricated on SOS Chip;208
19.1;1. Introduction;208
19.2;2. ISFET Biosensor;208
19.3;3. Integrated Multibiosensor;209
19.4;4. Integrating Other Sensors on the SOS Chip;215
19.5;5. Application;219
19.6;6. Conclusion;220
19.7;ACKNOWLEDGMENT;220
19.8;References;221
20;Chapter 13. Enzyme Embodied Electrode—–A New Amperometric Biosensing Device;222
20.1;1. Introduction;222
20.2;2. Fabrication Technique of EEE;223
20.3;3. Batch Mode Operation of EEE Sensor;227
20.4;4. Flow Injection Analysis Mode Operation of EEE Sensor;230
20.5;5. Pulse Voltammetric Mode Operation of EEE Sensor;235
20.6;6. Concluding Remarks;239
20.7;References;240
21;Chapter 14. Optical Immunosensors;242
21.1;1. Introduction;242
21.2;2. Luminescent Immunosensors;244
21.3;3. Electrochemical Luminescence-Based Immunosensor for Homogeneous Immunoassay;247
21.4;References;252
22;Chapter 15. The Molecular Recognitive Component of Chemical Sensor Selectivity;254
22.1;1. Introduction;254
22.2;2. The Conventional Approach to the Recognition Process;254
22.3;3. Information Theory and Recognition by Chemical and Biosensors;256
22.4;4. Bimolecular Interactions Studied by Molecular Graphics;262
22.5;5. Experimental Studies in Molecular Recognition;266
22.6;References;270
23;Chapter 16. Use of Bacterial Magnetite for Biosensing;272
23.1;1. Introduction;272
23.2;2. Characterization of Bacterial Magnetite;272
23.3;3. Glucose Sensing by Glucose Oxidase Immobilized on Bacterial Magnetites;276
23.4;4. Squamous Cell Carcinoma (SCC) Sensing by Antibody Immobilized on Bacterial Magnetites;278
23.5;5. Mouse IgG Sensing by FITC-Conjugated Anti-Mouse IgG Immobilized on Bacterial Magnetites;280
23.6;6. Conclusion;284
23.7;References;284
24;Chapter 17. Biosensing Using Calorimetric Devices;286
24.1;1. Introduction;286
24.2;2. Fundamentals of Calorimetric Biosensors;286
24.3;3. New Trends in Enzyme Thermistors;296
24.4;4. Concluding Remarks;299
24.5;References;299
25;Index;300




