E-Book, Englisch, 376 Seiten
Singh Applied Welding Engineering
1. Auflage 2011
ISBN: 978-0-12-391917-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Processes, Codes, and Standards
E-Book, Englisch, 376 Seiten
ISBN: 978-0-12-391917-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Ramesh Singh, MS, IEng, MWeldI, is registered as Incorporated Engineer with British Engineering Council UK and a Member of The Welding Institute, UK. He worked as engineer for various operating and EPC organizations in Middle East, Canada and US. Most recently, he worked for 10 years with Gulf Interstate Engineering, Houston, TX. He is now consulting in the fields of pipeline integrity and related materials and corrosion topics. Ramesh is a graduate from Indian Air Force Technical Academy, with diplomas in Structural Fabrication Engineering and Welding Technology. He has been member and officer of the Canadian Standard Association and NACE and serves on several technical committees. He has worked in industries spanning over aeronautical, alloy steel castings, fabrication, machining, welding engineering, petrochemical, and oil and gas. He has written several technical papers and published articles in leading industry magazines, addressing the practical aspects of welding, construction and corrosion issues relating to structures, equipment and pipelines.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Applied Welding Engineering: Processes, Codes and Standards;4
3;Copyright Page;5
4;Contents;8
5;Preface;22
6;Acknowledgment;24
7;1. Introduction to Basic Metallurgy;26
7.1;1. Introduction;28
7.1.1;Pure Metals and Alloys;29
7.1.2;Smelting;29
7.1.3;Iron;29
7.1.3.1;Sponge Iron;29
7.2;2. Alloys;32
7.2.1;Alloys;32
7.2.2;Effects of Alloying Elements;33
7.2.2.1;Carbon Steels;33
7.2.2.2;Sulfur;33
7.2.2.3;Manganese;33
7.2.2.4;Phosphorus;34
7.2.2.5;Silicon;34
7.2.3;Alloy Steels;34
7.2.4;The Effect of Alloying Elements on Ferrite;34
7.2.5;Effects of Alloying Elements on Carbide;35
7.3;3. Physical Metallurgy;38
7.3.1;Crystal Lattices;38
7.3.2;Crystal Structure Nomenclature;39
7.3.3;Solidification;39
7.3.3.1;Lever Rule of Solidification;39
7.3.4;Constitutional Supercooling;41
7.3.5;Elementary Theory of Nucleation;42
7.3.6;Allotropy;43
7.3.7;Crystal Imperfections;46
7.3.8;Grain Size;46
7.4;4. Structure of Materials;48
7.4.1;Phase Diagrams;49
7.4.2;Different Types of Phase Diagrams;49
7.4.3;Iron-Iron Carbide Phase Diagram;53
7.4.4;Explanation of the Iron-Carbon Phase Diagram;53
7.4.5;Rationale for Letter Designations in the Iron-Iron Carbide Phase Diagram;57
7.5;5. Production of Steel;58
7.5.1;The Electric Arc Furnace (EAF) Process;58
7.5.1.1;Furnace Charging;59
7.5.1.2;Melting;60
7.5.1.3;Refining;61
7.5.1.4;Phosphorus Removal;61
7.5.1.5;Sulfur Removal;62
7.5.1.6;Nitrogen and Hydrogen Control;62
7.5.1.7;De-Slagging;63
7.5.1.8;Tapping;63
7.5.2;Basic Oxygen Furnace (BOF);64
7.5.2.1;Refining Reactions;65
7.5.2.2;Carbon;65
7.5.2.3;Silicon;65
7.5.2.4;Manganese;66
7.5.2.5;Phosphorus;67
7.5.2.6;Sulfur Removal;68
7.5.3;Deoxidation of Steel;69
7.5.3.1;Rimmed Steel;70
7.5.3.2;Capped Steel;71
7.5.3.3;Semi-Killed Steel;71
7.5.3.4;Killed Steel;71
7.5.4;Deoxidation Equilibria;72
7.5.5;The Iron-Iron Carbide Phase Diagram;75
7.6;6. Classification of Steels;76
7.6.1;Carbon Steels;78
7.6.1.1;Low-Carbon;78
7.6.1.2;Medium-Carbon;78
7.6.1.3;High-Carbon;79
7.6.1.4;Ultrahigh-Carbon;79
7.6.2;High-Strength Low-Alloy (HSLA) Steels;79
7.6.2.1;Classification of HSLA;79
7.6.3;Low-Alloy Steels;80
7.6.3.1;Low-Carbon Quenched and Tempered Steels;80
7.6.3.2;Medium-Carbon Ultrahigh-Strength Steels;80
7.6.3.3;Bearing Steels;80
7.6.3.4;Chromium-Molybdenum Heat-Resistant Steels;80
7.6.4;AISI Series;81
7.6.4.1;Some Examples AISI Classifications;81
7.7;7. Cast Iron;82
7.7.1;Types of Cast Iron;82
7.7.2;White Cast Iron;84
7.7.3;Malleable Cast Iron;84
7.7.4;Ferritic Malleable Iron;85
7.7.4.1;White Heart Cast Iron;85
7.7.4.2;Black Heart Cast Iron;85
7.7.5;Pearlite Malleable Cast Iron;85
7.7.6;Martensitic Malleable Iron;85
7.7.7;Gray Cast Iron;86
7.7.7.1;Castability of Gray Cast Iron;87
7.7.8;Chilled Cast Iron;88
7.7.9;Nodular (Spheroidal Graphite) Cast Iron;88
7.7.9.1;Castability, Solidification and Shrinkage;88
7.7.10;Alloy Cast Irons;89
7.8;8. Stainless Steels;90
7.8.1;Stainless Steel Production;90
7.8.1.1;Forming;91
7.8.1.2;Heat Treatment;91
7.8.1.3;Cutting Stainless Steel;93
7.8.1.4;Finishing;93
7.8.2;Fabrication of Stainless Steel;94
7.8.3;Welding and Joining;94
7.8.4;Types of Stainless Steels;94
7.8.5;Classification of Stainless Steel;95
7.8.5.1;Martensitic Stainless Steels;95
7.8.5.2;Ferritic Stainless Steels;95
7.8.5.3;Pitting Resistance Equivalent (PRE);96
7.8.5.4;Austenitic Stainless Steels;96
7.8.5.5;Duplex Stainless Steels;97
7.8.5.6;Precipitation-Hardening (PH) Stainless Steels;98
7.9;9. Non-Ferrous Materials;100
7.9.1;Copper and Copper Alloys;100
7.9.2;Aluminum and Aluminum Alloys;101
7.9.3;Physical Metallurgy of Aluminum;101
7.9.4;Effect of Alloying Elements on Aluminum;102
7.9.4.1;Effect of Iron;102
7.9.4.2;Effect of Silicon;102
7.9.4.3;Effect of Manganese;102
7.9.4.4;Effect of Magnesium;102
7.9.4.5;Effect of Copper;103
7.9.4.6;Effect of Zinc;103
7.9.4.7;Effect of Chromium;103
7.9.4.8;Effect of Zirconium;104
7.9.4.9;Effect of Lithium;104
7.9.5;Age Hardenable Alloys;104
7.9.6;Nickel and Nickel Alloys;106
7.9.7;Titanium and Titanium Alloys;106
7.10;10. Working With Metals;108
7.10.1;Elastic Limit;108
7.10.2;Plastic Deformation;109
7.10.3;Fracture;109
7.10.4;Polycrystalline Materials;109
7.10.5;Cold Working;109
7.10.6;Stored Energy;110
7.10.7;Restoring the Lattice Structure of Metal after Cold Work – Annealing;110
7.10.8;Grain Growth;110
7.10.9;Hot Working;111
7.11;11. Mechanical Properties and Testing of Metals;112
7.11.1;Strength of Materials;112
7.11.2;Elastic and Plastic Behavior;113
7.11.3;Ductile vs. Brittle Behavior;113
7.11.4;Failure;114
7.11.5;Fracture;114
7.11.6;Fracture Control;115
7.11.7;Crack Growth and Fracture;116
7.11.7.1;Damage Tolerance;116
7.11.8;Failure Analysis;116
7.11.9;Testing of Metals;118
7.11.9.1;Tensile Test;118
7.11.9.2;Hardness Test;118
7.11.9.3;Impact Test;119
7.11.9.4;Creep Test;119
7.11.9.5;Fatigue Test;119
7.12;12. Heat Treatment of Steels;120
7.12.1;TTT and CCT Curves;121
7.12.1.1;Isothermal-Transformation (IT) or (TTT) Diagrams;121
7.12.2;Cooling Curves;123
7.12.3;Cooling-Transformation (C-T) Diagrams;123
7.12.4;Stress Relief Annealing;123
7.12.5;Normalizing;125
7.12.6;Annealing;125
7.12.7;Spheroidizing;126
7.12.8;Tempering;127
7.12.8.1;Austempering of Steels;127
7.12.9;Martempering;127
7.12.10;Hardening;128
7.12.10.1;Hardening by Martensite Transformation;128
7.12.11;Case Hardening and Carburizing;128
7.12.12;Process of Quenching;130
7.12.13;Heat Treatment of Non-Ferrous Material;130
7.12.13.1;Heat Treatment of Copper and Copper Alloys;130
7.12.13.2;Heat Treating Aluminum and its Alloys;131
7.12.14;Heat-Treating Furnaces;131
7.12.15;Liquid Heating Baths;132
8;2. Welding Metallurgy and Welding Processes;134
8.1;1. Introduction;136
8.1.1;Welding Procedures;137
8.2;2. Physics of Welding;140
8.2.1;Heat;141
8.2.2;Details of the Heat-Flow in Welding;142
8.2.3;Heat in Arc Welding Processes;145
8.2.4;Heat in Plasma Arc Cutting and Welding;146
8.2.5;Heat in Resistance Welding;146
8.2.6;Heat in Electroslag Welding (ESW);147
8.2.7;Heat in Welding Processes using Chemical Sources;149
8.2.7.1;Thermit Welding;150
8.2.8;Heat Generated by Mechanical Processes;151
8.2.8.1;Friction Welding;151
8.2.8.2;Ultrasonic Welding;152
8.2.8.3;Explosion Welding;153
8.2.9;Heat by Focused Sources;153
8.2.9.1;Laser Beam Welding (LBW);154
8.2.9.2;Electron Beam Welding (EBW);155
8.2.10;Other Sources of Heat in Welding;156
8.2.11;Application of the Principles of Welding Physics;158
8.2.11.1;Pre-Heating;158
8.2.11.2;Determining the Need for Pre-Heat and the Temperature;159
8.2.11.3;Post-Weld Heat Treatment (PWHT);163
8.2.12;Heat and Time in Welding;165
8.2.12.1;Heat Input;165
8.2.12.2;Energy Distribution;165
8.2.12.3;Rate of Heating;166
8.2.12.4;Maximum Temperature;166
8.2.13;Heat Generation and Temperature Distribution – Practical Application;166
8.2.13.1;Time at Temperature;167
8.2.13.2;Cooling Rates;167
8.2.13.3;Base Metal Mass;167
8.3;3. Welding and Joining Processes;172
8.3.1;Shielded Metal Arc Welding (SMAW): Process Fundamentals;176
8.3.1.1;How the Process Works;177
8.3.1.2;Covered Electrodes Used in the SMAW Process;177
8.3.1.3;Joint Design and Preparation;179
8.3.2;Gas Tungsten Arc Welding (GTAW): Process Description;180
8.3.2.1;Process Advantages and Limitations;180
8.3.2.2;Electrodes;180
8.3.2.3;Joint Design;181
8.3.3;Gas Metal Arc Welding (GMAW);182
8.3.3.1;Process Description;182
8.3.3.2;Electrode Selection;183
8.3.3.3;Joint Design;183
8.3.4;Flux Cored Arc Welding (FCAW);183
8.3.4.1;Process Fundamentals;183
8.3.4.2;Principal Applications of FCAW;184
8.3.4.3;Shielding Gases;185
8.3.4.4;Electrodes;185
8.3.5;Submerged Arc Welding (SAW);185
8.3.5.1;Process Description;185
8.3.5.2;Materials;186
8.3.6;Other Common Joining and Welding Processes;186
8.3.6.1;Electroslag Welding (ESW);186
8.3.6.2;Plasma Arc Welding (PAW);187
8.3.7;Stud Welding;188
8.3.7.1;Oxy-fuel Gas Welding (OFW);189
8.3.7.2;Brazing and Soldering;190
8.3.8;Arc-Welding Power Sources;191
8.3.8.1;Constant Voltage Power Source;192
8.3.8.2;Constant-Current Power Source;192
8.3.8.3;Transformers;193
8.3.8.4;Thyristor-Silicon Controlled Rectifiers (SCR);194
8.3.8.5;Generators;195
8.3.8.6;Alternators;195
8.4;4. Physical Effect of Heat on Material During Welding;196
8.4.1;The Molten Metal;197
8.4.2;The Welded Plate;197
8.4.3;Influence of Cooling Rate;198
8.5;5. Stresses, Shrinkage and Distortion in Weldments;200
8.5.1;Stresses in Weldments;201
8.5.1.1;Definitions of Terms;201
8.5.2;Development of Stresses;201
8.5.2.1;Moving a Localized Heat Source;201
8.5.3;Distribution of Stress in a Simple Weld;202
8.5.4;Residual Stresses;203
8.5.5;Shrinkages;203
8.5.5.1;Shrinkage Transverse to a Butt Weld;203
8.5.6;Shrinkage Longitudinal to a Butt Weld;204
8.5.7;Distortion in Weldments;205
8.5.7.1;General Description;205
8.5.7.2;Angular Distortion;206
8.5.7.3;Longitudinal Bowing;206
8.5.7.4;Buckling;206
8.5.8;Corrective Measures;207
8.5.9;Thermal Straightening;207
8.5.10;Designing Weld Joints;208
8.5.10.1;Assessing the Strength of Welds;209
8.5.10.2;Throat of a Weld;209
8.5.10.3;Sizing a Fillet Weld;210
8.5.10.4;Stress Causing Fatigue in Weld;210
8.5.10.5;Weld Size and Cost Control;213
8.5.10.6;Control of Welding Stresses to Minimize Through-Thickness Failures;215
8.6;6. Welding Corrosion Resistant Alloys – Stainless Steel;216
8.6.1;Corrosion Resistant Alloys (CRAs);217
8.6.2;Stainless Steel;217
8.6.3;Welding Stainless Steel;217
8.6.3.1;General Welding Characteristics;217
8.6.3.2;Welding Processes;219
8.6.3.3;Protection against Oxidation;219
8.6.3.4;Welding Hygiene;219
8.6.4;Austenitic Stainless Steels;220
8.6.4.1;Metallurgical Concerns Associated with Welding Austenitic Stainless Steels;220
8.6.4.2;Mechanical Properties of Stainless Steels;221
8.6.4.3;Welding of Austenitic Stainless Steels;221
8.6.5;Superaustenitic Stainless Steels;223
8.6.5.1;Material Properties and Applications;223
8.6.5.2;Welding and Joining of Superaustenitic Stainless Steels;223
8.6.5.3;Difficulties Associated with Welding Stainless Steel;224
8.6.6;Martensitic Stainless Steels;227
8.6.6.1;Properties and Application;227
8.6.6.2;Welding Martensitic Stainless Steels;228
8.6.7;Ferritic Stainless Steels;230
8.6.7.1;Properties and Application;230
8.6.7.2;Welding Ferritic Steel;231
8.6.8;Precipitation Hardened Stainless Steels;231
8.6.8.1;Properties and Application of Precipitation Hardened Steels;231
8.6.8.2;Welding Precipitation Hardened (PH) Steels;232
8.6.9;Duplex Stainless Steels;235
8.6.9.1;Mechanical Properties;235
8.6.9.2;Heat Treatment;237
8.6.9.3;Welding and Fabrication;237
8.7;7. Welding Non-Ferrous Metals and Alloys;240
8.7.1;Aluminum and its Alloys;241
8.7.2;The Confusing Thing about Aluminum;241
8.7.3;Weld Hygiene;242
8.7.4;Preheating;242
8.7.4.1;The Conductivity of Heat;242
8.7.4.2;Welding Filler Metals;243
8.7.5;Welding Aluminum with the Shield Metal Arc Welding (SMAW) process;243
8.7.6;Welding Aluminum with the Gas Tungsten Arc Welding (GTAW) process;245
8.7.7;Type of Current and Electrode;245
8.7.7.1;Grinding the Tip of the Electrodes;246
8.7.8;Welding Aluminum with the Gas Metal Arc Welding (GMAW) Process;246
8.7.8.1;Power Source;246
8.7.8.2;Wire Feeder;246
8.7.8.3;Welding Guns;247
8.7.9;Welding Technique;247
8.7.9.1;The Push Technique;247
8.7.9.2;Travel Speed;247
8.7.10;Shielding Gas;248
8.7.11;Welding Wire;248
8.7.12;Friction Stir Welding (FSW);248
8.7.13;Nickel Alloys;249
8.7.13.1;Heat Treatment;249
8.7.13.2;Mechanical Properties;249
8.7.13.3;Fabrication;250
8.7.13.4;Precipitation Hardenable Nickel-Based Alloys;250
8.7.13.5;Heat Treatment of PH Nickel Alloys;250
8.7.13.6;Mechanical Properties;250
8.7.13.7;Welding;251
8.7.14;Titanium Alloys;251
8.7.14.1;Heat Treatment;252
8.7.14.2;Alpha (a) Titanium;252
8.7.14.3;Alpha/beta (a-ß) Titanium;252
8.7.14.4;Beta (ß) Titanium;252
8.8;8. Weld Defects and Inspection;254
8.8.1;Weld Quality;254
8.8.1.1;Acceptance Standards;254
8.8.1.2;Discontinuities in Fusion Welded Joints;255
8.8.2;Classification of Weld Joint Discontinuities;256
8.8.3;Typical Weld Defects;257
8.8.3.1;Porosity;258
8.8.3.2;Inclusions;259
8.8.3.3;Incomplete Fusion;259
8.8.3.4;Inadequate Joint Penetration;259
8.8.3.5;Undercut;259
8.8.3.6;Underfill;260
8.8.3.7;Overlap;260
8.8.3.8;Cracks;260
8.8.3.9;Surface Irregularities;261
8.8.4;Base Metal Discontinuities;261
8.8.5;Designing Weld Joints;261
8.8.5.1;Basis of Welded Design;262
8.8.5.2;Stresses in Pressure Vessels;266
8.8.5.3;Pipelines;267
9;3. Non-Destructive Testing;270
9.1;1. Introduction;272
9.2;2. Visual Inspection (VT);274
9.2.1;Advantages of Visual Inspection;275
9.3;3. Radiography;278
9.3.1;Source of Radiation;279
9.3.2;X-Rays;280
9.3.3;Effect of Kv and MA;282
9.3.4;Scatter Radiation;283
9.3.5;X-Ray Equipment;284
9.3.5.1;Power Sources;284
9.3.5.2;Control Panel;285
9.3.6;Gamma Rays;286
9.3.6.1;Artificial Sources;287
9.3.6.2;Half-Life;287
9.3.7;Film;288
9.3.8;Radiographic Exposure Techniques;290
9.3.8.1;Single Wall Single Image (SWSI);291
9.3.8.2;Panoramic Technique;291
9.3.8.3;Double Wall Single Image (DWSI);291
9.3.8.4;Double Wall Double Image (DWDI);291
9.3.9;Radiographic Image Quality;293
9.3.9.1;Radiographic Contrast;293
9.3.9.2;Subject Contrast;294
9.3.9.3;Film Contrast;294
9.3.10;Radiographic Definition;295
9.3.10.1;Exposure Geometry;295
9.3.10.2;Film Graininess;296
9.3.11;Image Quality Indicator (IQI) or Penetrameter;297
9.3.12;Radiation Safety;297
9.4;4. Magnetic Particle Testing;300
9.4.1;Principles of Magnetic Particle Testing;301
9.4.2;Calculating Magnetizing Current;302
9.4.3;Types of Magnetizing Current;303
9.4.4;Inspection Method;304
9.4.4.1;Pre-Cleaning of Test Surface;304
9.4.4.2;Drying after Preparation;304
9.4.4.3;Application of the Current;304
9.4.4.4;Alternating Current;304
9.4.4.5;Direct Current;305
9.4.4.6;Continuous or Residual Application of Current;305
9.4.5;Dry Method of Inspection;306
9.4.6;Wet Method of Inspection;306
9.4.7;Viewing Conditions;307
9.4.7.1;Inspection under Ultraviolet (Black) Light;307
9.5;5. Penetrant Testing;308
9.5.1;General Procedure;309
9.5.2;Penetrant Materials;309
9.5.3;Specific Requirements;309
9.5.3.1;Control of Contaminants;309
9.5.3.2;Surface Preparation;310
9.5.3.3;Drying after Preparation;311
9.5.4;Techniques;311
9.5.4.1;Techniques for Standard Temperatures;311
9.5.4.2;Penetrant Application;311
9.5.4.3;Penetration Time (Dwell Time);312
9.5.4.4;Excess Penetrant Removal;312
9.5.4.5;Removing Excess Water-Washable Penetrant;312
9.5.4.6;Removing Excess Post-Emulsifying Penetrant;312
9.5.4.7;Removing Excess Solvent-Removable Penetrant;312
9.5.4.8;Drying Process after Excess Penetrant Removal;312
9.5.4.9;Developing;313
9.5.5;Interpretation;313
9.5.5.1;Final Interpretation;313
9.5.5.2;Characterizing Indication(s);313
9.5.5.3;Color Contrast Penetrant;314
9.5.5.4;Fluorescent Penetrant;314
9.5.6;Evaluation;315
9.5.6.1;Liquid Penetrant Comparator;315
9.6;6. Ultrasonic Testing;318
9.6.1;Theory of Sound Wave and Propagation;319
9.6.2;Theory of Sound;320
9.6.3;Piezoelectricity;321
9.6.4;Sound Beam Reflection;321
9.6.5;Sound Beam Frequencies;321
9.6.6;Sound Beam Velocities;322
9.6.7;Snell’s Law of Reflection and Refraction;323
9.6.7.1;Understanding the Variables Associated with Ultrasonic Testing;324
9.6.8;Selection of Test Equipment;325
9.6.8.1;A-Scan Equipment;326
9.6.8.2;B-Scan Equipment;326
9.6.8.3;C-Scan Equipment;326
9.6.9;Testing Procedure;327
9.6.9.1;Role of Coupling in Testing;328
9.7;7. Eddy Current Testing;330
9.7.1;Method;330
9.8;8. Acoustic Emission Testing (AET);332
9.8.1;Ongoing Developments in the AET Field;332
9.8.2;Future of AET;333
9.9;9. Ferrite Testing;346
9.9.1;Effect of Ferrite in Austenitic Welds;346
9.10;10. Pressure Testing;348
9.10.1;Purpose;348
9.10.2;Method;348
9.10.2.1;Test Medium;349
9.10.2.2;Sensitivity of the Test;349
9.10.2.3;Proof Testing;349
9.10.3;Practical Application of Hydrostatic Testing;350
9.10.3.1;Critical Flaw Size;352
10;4. Codes and Standards;354
10.1;1. Introduction;356
10.2;2. Codes, Specifications and Standards;358
10.2.1;American Society of Mechanical Engineers (ASME);359
10.2.1.1;Background and History;359
10.2.1.2;Present Day ASME;361
10.2.1.3;List of all Twelve ASME Boiler and Pressure Vessels Codes;361
10.2.1.4;ASME Section VIII, Division 1 (Pressure Vessels);362
10.2.1.5;ASME Code for Pressure Piping;362
10.2.1.6;ASME Section V;365
10.2.1.7;The National Board;365
10.2.1.8;The National Board Inspection Code (NBIC);367
10.2.2;American Petroleum Institute;367
10.2.2.1;API 653 (Above-Ground Storage Tanks);368
10.2.2.2;API 510 (Pressure Vessels);368
10.2.2.3;API 570 (Pressure Piping);368
10.2.2.4;API RP 579 (Fitness for Service);368
10.2.2.5;API RP 580 (Risk Based Inspection);368
10.2.3;American Society for Testing Materials (ASTM);368
11;Index;372