E-Book, Englisch, 400 Seiten
Smith / Matteoli / O' Connell Fluctuation Theory of Solutions
Erscheinungsjahr 2013
ISBN: 978-1-4398-9923-6
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Applications in Chemistry, Chemical Engineering, and Biophysics
E-Book, Englisch, 400 Seiten
ISBN: 978-1-4398-9923-6
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
There are essentially two theories of solutions that can be considered exact: the McMillan–Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications described by experts in chemistry, chemical engineering, and biophysics.
The book, which begins with a historical perspective and an introductory chapter, includes a basic derivation for more casual readers. It is then devoted to providing new and very recent applications of FST. The first application chapters focus on simple model, binary, and ternary systems, using FST to explain their thermodynamic properties and the concept of preferential solvation. Later chapters illustrate the use of FST to develop more accurate potential functions for simulation, describe new approaches to elucidate microheterogeneities in solutions, and present an overview of solvation in new and model systems, including those under critical conditions. Expert contributors also discuss the use of FST to model solute solubility in a variety of systems.
The final chapters present a series of biological applications that illustrate the use of FST to study cosolvent effects on proteins and their implications for protein folding. With the application of FST to study biological systems now well established, and given the continuing developments in computer hardware and software increasing the range of potential applications, FST provides a rigorous and useful approach for understanding a wide array of solution properties. This book outlines those approaches, and their advantages, across a range of disciplines, elucidating this robust, practical theory.
Zielgruppe
Researchers in academia, industry, and government involved in solution thermodynamics, statistical mechanics, physical chemistry, chemical engineering, biophysics, computational chemistry, biochemistry, molecular biology, and medicinal chemistry, as well as students in advanced statistical mechanics and thermodynamics classes.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biochemie (nichtmedizinisch)
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Verfahrenstechnik, Chemieingenieurwesen
- Naturwissenschaften Chemie Physikalische Chemie
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Naturwissenschaften Physik Angewandte Physik Biophysik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biophysik
Weitere Infos & Material
Fluctuation Solution Theory: A Primer
Paul E. Smith, Enrico Matteoli, and John P. O’Connell
Global and Local Properties of Mixtures: An Expanded Paradigm for the Study of Mixtures
Arieh Ben-Naim
Preferential Solvation in Mixed Solvents
Yizhak Marcus
Kirkwood–Buff Integrals in Fully Miscible Ternary Systems: Thermodynamic Data, Calculation, Representation, and Interpretation
Enrico Matteoli, Paolo Gianni, and Luciano Lepori
Accurate Force Fields for Molecular Simulation
Elizabeth A. Ploetz, Samantha Weerasinghe, Myungshim Kang, and Paul E. Smith
Fluctuation Solution Theory Properties from Molecular Simulation
Jens Abildskov, Rasmus Wedberg, and John P. O’Connell
Concentration Fluctuations and Microheterogeneity in Aqueous Mixtures: New Developments in Analogy with Microemulsions
Aurélien Perera
Solvation Phenomena in Dilute Solutions: Formal Results, Experimental Evidence, and Modeling Implications
Ariel A. Chialvo
Molecular Thermodynamic Modeling of Fluctuation Solution Theory Properties
John P. O’Connell and Jens Abildskov
Solubilities of Various Solutes in Multiple Solvents: A Fluctuation Theory Approach
Ivan L. Shulgin and Eli Ruckenstein
Why Is Fluctuation Solution Theory Indispensable for the Study of Biomolecules?
Seishi Shimizu
Osmophobics and Hydrophobics: The Changing Landscape of Protein Folding
Matthew Auton and B. Montgomery Pettitt
References
Index