Stavropoulos-Giokas / Charron / Navarrete | Cord Blood Stem Cells Medicine | E-Book | www.sack.de
E-Book

E-Book, Englisch, 398 Seiten

Stavropoulos-Giokas / Charron / Navarrete Cord Blood Stem Cells Medicine


1. Auflage 2014
ISBN: 978-0-12-407836-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 398 Seiten

ISBN: 978-0-12-407836-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Cord Blood Stem Cells and Regenerative Medicine discusses the current applications for cord blood stem cells and techniques for banking cord blood. Cord blood, blood from the umbilical cord and placenta of an infant, represents an alternate source of stem cells that can be used to treat a myriad of disorders. Cord blood stem cells are being used more frequently and studied more seriously, as evidenced by the explosion of scientific literature on the topic. Currently, clinical and pre-clinical trials are being done in the field, treating conditions as severe as heart failure. Coupled with regenerative medicine, cord blood stem cells potentially carry the future of research and medicine in treating tissue damage, genetic disorders, and degenerative diseases. Read about new applications for cord blood stem cells and new techniques for banking cord blood - the future of regenerative medicine therapy. - Comprehensive coverage of the medical application of cord blood stem cells - Practical guide for usage of allogeneic and autologous cord blood in regenerative medicine - Covers new applications of cord blood stem cells, particularly transplantation and HIV - Introduces new technologies for cord blood stem cells and regenerative medicine

Stavropoulos-Giokas / Charron / Navarrete Cord Blood Stem Cells Medicine jetzt bestellen!

Weitere Infos & Material


1;Front
Cover;1
2;Cord Blood Stem
Cells Medicine;4
3;Copyright;5
4;Contents;6
5;List of Contributors;14
6;Foreword;18
6.1;TWENTY-FIVE YEARS OF CORD BLOOD TRANSPLANT;18
7;Section I -
Introduction;20
7.1;Chapter 1 - Introduction to Cord Blood Stem Cells;22
8;Section II -
Cord Blood Cells Biology;26
8.1;Chapter 2 - Cord Blood Content;28
8.1.1;1. BIOLOGICAL BACKGROUND OF CORD BLOOD CELLS—DEVELOPMENT OF HEMATOPOIETIC AND NONHEMATOPOIETIC CELLS;28
8.1.2;2. ENDOTHELIAL CELLS IN CB;28
8.1.3;3. STROMAL CELLS IN CB AND CORD TISSUE AS COMPARED TO BM;29
8.1.4;4. ISOLATION, EXPANSION, AND CHARACTERIZATION OF CB-DERIVED ADHERENT CELLS FROM CB;31
8.1.5;5. GENERATION OF CELL CLONES AND CLONAL POPULATIONS;31
8.1.6;6. USSC AND CB MSC;31
8.1.7;7. GENERATION OF ADHERENT CELLS FROM THE WHARTON’S JELLY (CORD);31
8.1.8;8. GENE EXPRESSION PROFILES;32
8.1.9;9. CORRELATION OF HOX-GENE EXPRESSION AND REGENERATIVE POTENTIAL;32
8.1.10;10. BONE AND CARTILAGE FORMING POTENTIAL OF CORD BLOOD STROMAL CELLS;35
8.1.11;11. WHY DO WE HAVE THESE PROGENITORS OR ELUSIVE CELLS IN CB?;35
8.1.12;12. USSC AND MSC FROM CB SUPPORT HEMATOPOIETIC CELLS;36
8.1.13;13. LIVER REGENERATION AND POTENTIAL OF CB-DERIVED STEM CELLS TO UNDERGO HEPATIC DIFFERENTIATION;39
8.1.14;14. CARDIAL REGENERATION IN VIVO;40
8.1.15;15. IN VITRO DIFFERENTIATION POTENTIAL TOWARD CARDIOMYOCYTES;40
8.1.16;16. CB SUBPOPULATIONS FOR NEURONAL REGENERATION;41
8.1.17;17. REPROGRAMMED SUBPOPULATIONS FROM CB;41
8.1.18;18. CONCLUSION;42
8.1.19;LIST OF ACRONYMS AND ABBREVIATIONS;42
8.1.20;REFERENCES;43
8.2;Chapter 3 - Cord Blood Hematopoiesis: The Road to Transplantation;46
8.2.1;1. USE OF PLACENTAL CORD BLOOD AS A SOURCE FOR HEMATOPOIETIC STEM/PROGENITOR CELLS TRANSPLANTATION: A HISTORICAL.PERSPECTIVE;46
8.2.2;2. CHARACTERIZATION OF PCB HSPCS;47
8.2.3;3. STRATEGIES TO OVERCOME CURRENT LIMITATIONS IN PCB TRANSPLANTATION;48
8.2.4;4. INCREASING THE HSPCS OF THE GRAFT;49
8.2.5;5. IMPROVING THE LODGING CAPACITY OF THE PCB GRAFT;52
8.2.6;6. IMPROVING THE STEM CELL RECEPTIVITY OR IMMUNOLOGICAL.STATUS OF THE HOST;53
8.2.7;7. ADDITIONAL CLINICAL USES OF CORD BLOOD UNDER INVESTIGATION;53
8.2.8;8. CONCLUDING REMARKS;53
8.2.9;REFERENCES;54
8.3;Chapter 4 - Immunobiology of Cord Blood Cells;58
8.3.1;1. INTRODUCTION;58
8.3.2;2. IMMUNE PROPERTIES OF CORD BLOOD CELLS;58
8.3.3;3. IMMUNE RECONSTITUTION AFTER CBT;60
8.3.4;4. GENERATION OF IMMUNE COMPETENT CELLS FROM CORD BLOOD;61
8.3.5;5. CONCLUSION;64
8.3.6;LIST OF ABBREVIATIONS;64
8.3.7;REFERENCES;64
8.4;Chapter 5 - Cord and Cord Blood-derived Endothelial Cells;68
8.4.1;1. INTRODUCTION;68
8.4.2;2. THE HUMAN ENDOTHELIAL COLONY-FORMING CELL HIERARCHY;70
8.4.3;3. DIFFERENCES BETWEEN HUMAN UMBILICAL CORD BLOOD.ECFCS AND THOSE SOURCED FROM ADULT PERIPHERAL.BLOOD, UMBILICAL CORD, AND PLACE...;70
8.4.4;4. OBSTETRIC FACTORS AND ECFC CONTENT IN UMBILICAL.CORD BLOOD AT TERM;71
8.4.5;5. ECFC CONTENT AND FUNCTION IN UMBILICAL CORD.BLOOD BASED ON GESTATIONAL AGE;72
8.4.6;6. THE DIABETIC ENVIRONMENT AFFECTS UMBILICAL CORD.BLOOD ECFCS;73
8.4.7;7. PROCESSING AND CRYOPRESERVATION AFFECT ECFC.NUMBERS IN UMBILICAL CORD BLOOD;74
8.4.8;8. THE PHENOTYPIC IDENTITY OF ECFCS;74
8.4.9;9. THE USE OF UMBILICAL CORD BLOOD OR PLACENTAL ECFCS.AS A CELLULAR PRODUCT IN REGENERATIVE MEDICINE;76
8.4.10;10. CONCLUSIONS;76
8.4.11;LIST OF ACRONYMS AND ABBREVIATIONS;77
8.4.12;ACKNOWLEDGMENT;77
8.4.13;REFERENCES;77
8.5;Chapter 6 - HLA and Immunogenetics in Cord Blood Transplantation;82
8.5.1;1. INTRODUCTION;82
8.5.2;2. STRUCTURE, FUNCTION, AND POLYMORPHISM OF HLA;83
8.5.3;3. HLA TYPING TECHNIQUES;83
8.5.4;4. CBT RESULTS;85
8.5.5;5. OTHER HLA CRITERIA FOR CBU SELECTION;88
8.5.6;6. CONCLUSION;90
8.5.7;LIST OF ABBREVIATIONS;90
8.5.8;REFERENCES;91
9;Section III -
Cord Blood Cells for Clinical Use;94
9.1;Chapter 7 - Clinical Use of Umbilical Cord Blood Cells;96
9.1.1;1. INTRODUCTION;96
9.1.2;2. CLINICAL CB TRANSPLANTATION;97
9.1.3;3. CLINICAL USE OF RELATED CB CELLS FOR ALLOGENEIC TRANSPLANTATION;98
9.1.4;4. CLINICAL USE OF UNRELATED CB CELLS FOR ALLOGENEIC TRANSPLANTATION;99
9.1.5;5. SELECTION OF CB UNITS FOR TRANSPLANTATION;107
9.1.6;6. NEW STRATEGIES TO IMPROVE OUTCOMES AFTER CB TRANSPLANTATION;112
9.1.7;7. CONCLUSION;115
9.1.8;LIST OF ACRONYMS AND ABBREVIATIONS;115
9.1.9;REFERENCES;116
9.2;Chapter 8 - Immunodeficiencies and Metabolic Diseases;120
9.2.1;1. IMMUNODEFICIENCIES;120
9.2.2;2. METABOLIC DISEASES;123
9.2.3;REFERENCES;127
9.3;Chapter 9 - Cord Blood Cells and Autoimmune Diseases;132
9.3.1;1. INTRODUCTION;132
9.3.2;2. NEW INSIGHTS IN THE PATHOGENESIS OF ADS;133
9.3.3;3. HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR THE TREATMENT OF AD;134
9.3.4;4. USE OF UCB-DERIVED CELLS AND CORD BLOOD MSCS FOR TREATING AD;135
9.3.5;5. CONCLUSION;139
9.3.6;REFERENCES;139
9.4;Chapter 10 - Umbilical Cord as a Source of Immunomodulatory Reagents;144
9.4.1;1. REGULATORY T-CELLS;144
9.4.2;2. MESENCHYMAL STROMAL CELLS;149
9.4.3;3. CONCLUSIONS;152
9.4.4;REFERENCES;152
9.5;Chapter 11 - Cord Blood Cells for Clinical Use: Expansion and Manipulation;160
9.5.1;1. INTRODUCTION;160
9.5.2;2. CB TRANSPLANTATION IN PEDIATRIC PATIENTS;161
9.5.3;3. CB TRANSPLANTATION IN ADULT PATIENTS;162
9.5.4;4. DOUBLE CB TRANSPLANTATION;163
9.5.5;5. CB TRANSPLANTATION AFTER REDUCED INTENSITY REGIMENS;164
9.5.6;6. CB GRAFT MANIPULATION;164
9.5.7;7. CB STEM CELL AND PROGENITOR CELL EXPANSION TO ENHANCE ENGRAFTMENT;164
9.5.8;8. IMPROVING CB HOMING TO BM;165
9.5.9;9. PROSTAGLANDIN AND HOMING;166
9.5.10;10. CB IMMUNE CELLS TO IMPROVE OUTCOME;166
9.5.11;11. EXPANDING MULTIVIRUS-SPECIFIC CYTOTOXIC T LYMPHOCYTES FROM CB;166
9.5.12;12. CB-DERIVED NATURAL KILLER (NK) CELLS;167
9.5.13;13. CB-DERIVED REGULATORY T CELLS;167
9.5.14;14. REDIRECTING SPECIFICITY OF CB-DERIVED T CELLS TO LEUKEMIA ANTIGENS;167
9.5.15;15. CONCLUSION;167
9.5.16;REFERENCES;168
9.6;Chapter 12 - Cord Blood Stem Cells for Clinical Use: Diabetes and Cord Blood;172
9.6.1;1. DIABETES AND GLOBAL CHALLENGES;172
9.6.2;2. STEM CELLS IN CORD BLOOD;175
9.6.3;3. APPLICATION OF STEM CELL EDUCATOR THERAPY IN T1D;176
9.6.4;4. APPLICATION OF STEM CELL EDUCATOR THERAPY IN TYPE 2 DIABETES;178
9.6.5;5. CONCLUSIONS;181
9.6.6;DR YONG ZHAO’S BIBLIOGRAPHY;181
9.6.7;REFERENCES;181
10;Section IV -
Regenerative Medicine
Applications;184
10.1;Chapter 13 - Emerging Uses of Cord Blood in Regenerative Medicine—Neurological Applications;186
10.1.1;1. INTRODUCTION;186
10.1.2;2. UMBILICAL CB AS A SOURCE OF STEM CELLS FOR NEUROLOGICAL APPLICATIONS;186
10.1.3;3. POTENTIAL MECHANISMS OF CB AS THERAPY FOR PATIENTS WITH NEUROLOGICAL DISEASES;187
10.1.4;4. UNRELATED DONOR CB TRANSPLANTATION FOR GENETIC BRAIN DISEASES IN CHILDREN;187
10.1.5;5. ISCHEMIC INJURIES;189
10.1.6;6. NEURODEGENERATIVE DISEASES;192
10.1.7;7. AUTISM;192
10.1.8;8. CHALLENGES;193
10.1.9;9. SUMMARY;193
10.1.10;REFERENCES;193
10.2;Chapter 14 - Biobanks for Induced Pluripotent Stem Cells and Reprogrammed Tissues;198
10.2.1;1. INTRODUCTION: A BRIEF HISTORY OF INDUCED PLURIPOTENCY;198
10.2.2;2. WHAT DEFINES PLURIPOTENCY AND THE PLURIPOTENT STEM CELL;199
10.2.3;3. REPROGRAMMING HUMAN SOMATIC CELLS TOWARD INDUCED PLURIPOTENT STEM CELLS USING DEFINED FACTORS;200
10.2.4;4. TISSUE DIFFERENTIATION FROM HIPSCS;203
10.2.5;5. POTENTIAL APPLICATIONS FOR HIPSCS IN FUTURE REGENERATIVE MEDICINES;205
10.2.6;6. CONSIDERATIONS TOWARD DEVELOPMENT OF HIPSC-DERIVED THERAPIES;207
10.2.7;7. FINAL CONSIDERATIONS;209
10.2.8;ACKNOWLEDGMENT;209
10.2.9;REFERENCES;209
11;Section V -
Cord Blood Banking: A
Current State of Affairs;214
11.1;Chapter 15 - Cord Blood Banking: Operational and Regulatory Aspects;216
11.1.1;1. INTRODUCTION;216
11.1.2;2. CONCLUSIONS;225
11.1.3;REFERENCES;226
11.2;Chapter 16 - Cord Blood Unit Selection for Unrelated Transplantation;230
11.2.1;1. OVERVIEW: SEARCH AND CORD BLOOD UNIT SELECTION;230
11.2.2;2. QUALITY/POTENCY OF THE CBU;231
11.2.3;3. SELECTION OF CB UNITS FOR TRANSPLANT: INTERACTION OF TNC AND HLA;232
11.2.4;4. SELECTION OF CBU WITH “PERMISSIBLE” HLA MISMATCHES;234
11.2.5;5. APPROACHES TO OVERCOME THE TNC LIMITATIONS OF SINGLE CB GRAFTS;237
11.2.6;6. QUALITY OF CBU—BANKING PRACTICES;238
11.2.7;7. PATIENT DIAGNOSIS, RELAPSE RISK, AND CBU SELECTION;239
11.2.8;8. OTHER IMMUNOLOGICAL CONSIDERATIONS FOR CBU SELECTION;240
11.2.9;9. OTHER GRAFT CHARACTERISTICS AFFECTING CBU QUALITY AND SAFETY;241
11.2.10;10. “BACK-UP” CB GRAFTS;243
11.2.11;11. CONCLUSIONS—SELECTION GUIDELINES;243
11.2.12;ACKNOWLEDGMENT;244
11.2.13;REFERENCES;244
11.3;Chapter 17 - Quality Management Systems Including Accreditation Standards;248
11.3.1;1. INTRODUCTION;249
11.3.2;2. QUALITY MANAGEMENT;249
11.3.3;3. QM SYSTEMS;251
11.3.4;4. CREATING A DOCUMENTED QUALITY MANAGEMENT SYSTEM (PROGRAM): QUALITY MANAGEMENT PLAN;256
11.3.5;5. STANDARDIZED SYSTEMS;263
11.3.6;6. ACCREDITATION;264
11.3.7;7. CONCLUSION;266
11.3.8;ABBREVIATIONS;266
11.3.9;REFERENCES;266
11.4;Chapter 18 - Regulation Across the Globe;268
11.4.1;1. INTRODUCTION;268
11.4.2;2. REGULATION IN THE EU;269
11.4.3;3. CORD BLOOD BANKING IN THE USA;273
11.4.4;4. CORD BLOOD BANKING IN ASIA, AFRICA, AND OCEANIA;276
11.4.5;5. CONCLUSION;278
11.4.6;REFERENCES;278
11.5;Chapter 19 - International Development and Import/Export—WMDA;280
11.5.1;1. INTRODUCTION;280
11.5.2;2. ISSUES TO CONSIDER WHEN STARTING A CORD BLOOD BANK;281
11.5.3;3. LISTING OF CORD BLOOD UNITS—MAKING THEM AVAILABLE TO TRANSPLANT UNITS;283
11.5.4;4. REGISTRY—GATEWAY TO THE WORLD;284
11.5.5;5. SEARCH FOR CORD BLOOD;287
11.5.6;6. CHALLENGES RELATED TO THE PROVISION OF CORD BLOOD—SELECTION;291
11.5.7;7. CHALLENGES RELATED TO THE PROVISION OF CORD BLOOD—SERVICE PROVIDER;292
11.5.8;8. CHALLENGES RELATED TO THE PROVISION OF CORD BLOOD—REGULATION;293
11.5.9;9. CORD BLOOD BANKS WORLDWIDE;296
11.5.10;10. ANALYZING THE FIELD—NUMBER OF CORD BLOOD SHIPMENTS;297
11.5.11;11. FUTURE PLANS FOR CORD BLOOD BANKS;298
11.5.12;12. LIST OF CORD BLOOD REGISTRIES/BANKS;299
11.5.13;REFERENCES;300
12;Section VI -
Cord Blood Banking: Current
and Future Outlooks;302
12.1;Chapter 20 - Allogeneic and Autologous Cord Blood Banks;304
12.1.1;1. A “PERFECT” MATCH?;304
12.1.2;2. STEM CELL TRANS-DIFFERENTIATION AND TISSUE REPAIR?;304
12.1.3;3. SOURCE AND QUALITY OF INFORMATION;305
12.1.4;4. MATERNAL AND PATERNAL KNOWLEDGE AND PREFERENCES;306
12.1.5;5. CONCLUSIONS: WHAT IS THE CURRENT “CHILD’S BEST INTEREST”?;307
12.1.6;CONFLICT OF INTEREST;307
12.1.7;REFERENCES;307
12.2;Chapter 21 - The Future of Cord Blood Banks;310
12.2.1;1. INTRODUCTION;310
12.2.2;2. CB AND FETAL ANNEX TISSUES ARE AN ABUNDANT SOURCE OF “YOUNG” STEM CELLS;311
12.2.3;3. CB-DERIVED EPCS;311
12.2.4;4. UC WHARTON’S JELLY MSCS;314
12.2.5;5. THE IPSCS;317
12.2.6;6. CB AND UC COMPONENTS;320
12.2.7;7. CONCLUSION;321
12.2.8;LIST OF ABBREVIATIONS;322
12.2.9;REFERENCES;322
13;Section VII -
The Viewpoint of Society;328
13.1;Chapter 22 - An Introductory Note to the Cord Blood Banking Issues in a European and International Environment;330
13.2;Chapter 23 - Ethical and Legal Issues in Cord Blood Stem Cells and Biobanking;332
13.2.1;1. INTRODUCTION;332
13.2.2;2. SCIENTIFIC BACKGROUND: STEM CELLS FROM CORD BLOOD, THE UMBILICAL CORD, AND THE PLACENTA;333
13.2.3;3. FUNDAMENTAL ETHICAL AND LEGAL ISSUES;334
13.2.4;4. THE STATUS OF THE UMBILICAL CORD AND THE PLACENTA;334
13.2.5;5. LEGISLATIVE CHARACTERIZATIONS OF STEM CELLS FROM CORD BLOOD, THE UMBILICAL CORD, AND THE PLACENTA;335
13.2.6;6. INFORMED CONSENT;336
13.2.7;7. COMMUNICATION OF INFORMATION TO THE DONOR OF CORD BLOOD, UMBILICAL CORD, AND PLACENTA REGARDING LIKELY DISEASES;337
13.2.8;8. THE DONATION OF CORD BLOOD, UMBILICAL CORD, AND PLACENTA AND NONCOMMERCIALIZATION;338
13.2.9;9. ANONYMITY—ANONYMIZATION OF DONATION AND PROTECTION OF DATA;338
13.2.10;10. “BIOLOGICAL SAFETY” OF THE DONOR AND BIOBANKING;339
13.2.11;11. REGENERATIVE MEDICINE AND MESENCHYMAL CELLS OF THE UMBILICAL CORD AND THE PLACENTA;340
13.2.12;12. CONCLUSION;341
13.2.13;REFERENCES;342
13.3;Chapter 24 - Industrial Economics of Cord Blood Banks;344
13.3.1;1. TYPES OF CORD BLOOD BANKS;344
13.3.2;2. EMERGENCE OF HYBRID MODELS;346
13.3.3;3. ECONOMIC MODEL OF PUBLIC BANKS;348
13.3.4;4. ECONOMIC MODEL OF COMMERCIAL BANKS;350
13.3.5;5. ATTITUDES AND KNOWLEDGE OF PREGNANT WOMEN;352
13.3.6;6. COST ANALYSIS FOR PUBLIC BANKS;353
13.3.7;7. COST ANALYSIS FOR PRIVATE BANKS;355
13.3.8;8. THE EMERGENCE OF BIOINSURANCE;356
13.3.9;9. COST-UTILITY FOR PUBLIC HEALTH;358
13.3.10;10. TISSUE ECONOMIES;360
13.3.11;11. RETHINKING THE BUSINESS MODEL OF PRIVATE BANKS;362
13.3.12;REFERENCES;363
13.4;Chapter 25 - Public Health Policies in European Union: An Innovation Strategy—Horizon 2020;366
13.4.1;1. INTRODUCTION;367
13.4.2;2. THE CONFIGURATION FRAMEWORK OF GUIDING PRINCIPLES OF HEALTH POLICIES;368
13.4.3;3. THE HEALTH STATUS OF THE POPULATION IN THE EU;370
13.4.4;APPENDIX 1: EVOLUTION RATE (%) OF LIFE EXPECTANCY FOR BOTH SEXES PER DECADE (1970–2010);371
13.4.5;APPENDIX 2: LIFE EXPECTANCY AT BIRTH, MALES–FEMALES (1970–2010);371
13.4.6;APPENDIX 3: LIFE EXPECTANCY AT THE AGE OF 65YEARS, MALES–FEMALES (1980–2010);372
13.4.7;APPENDIX 4: AGE-STANDARDIZED MORTALITY RATE (SDR-ICD-10-DISEASES OF ALL CAUSES, ALL AGES), PER 100,000 INHABITANTS;372
13.4.8;APPENDIX 5: BASIC CAUSES OF MORTALITY IN THE EU-28, EU-15, EU-13 (2010);372
13.4.9;APPENDIX 6: CAUSES OF DEATH—STANDARDIZED DEATH RATE PER 100,000 INHABITANTS IN THE EU-28, EU-15, EU-13 (1980–2010);372
13.4.10;APPENDIX 7: LOSS IN LIFE EXPECTANCY YEARS FOR MEN AND WOMEN FROM DEATH BEFORE THE AGE OF 65YEARS (1980–2010);373
13.4.11;APPENDIX 8: PYLLS FROM ALL CAUSES WITH COMPARATIVE REFERENCE TO LIFE EXPECTANCY (100,000 MEN–WOMEN AGED 0–69), (1961, 2010);373
13.4.12;Appendix 9: Health-adjusted Life Expectancy;373
13.4.13;4. REDESIGNING HEALTH POLICIES IN EUROPE;373
13.4.14;APPENDIX 10: THE MULTIDIMENSIONAL FIELD OF POPULATION-APPRECIATED HEALTH NEEDS;375
13.4.15;APPENDIX 11: MAIN OBJECTIVES OF HEALTH POLICIES: PROLONGING LIFE IN GOOD HEALTH AND WITH QUALITY YEARS;376
13.4.16;5. HEALTH POLICIES ON CORD BLOOD STEM CELLS BANKING;379
13.4.17;REFERENCES;382
14;Appendix;384
15;Index;390


List of Contributors
Julia Bosch,     Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Duesseldorf, Germany Shijie Cai Stem Cell Research Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK Weatherall Institute of Molecular Medicine, University of Oxford, UK Lee Carpenter,     NHS Blood and Transplant and Radcliffe Department of Medicine, University of Oxford, Oxford, UK Keith M. Channon,     Department of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK Dominique Charron,     Laboratoire “Jean Dausset,” Immunology and Histocompatibility Hôpital Saint-Louis AP-HP, Université Paris Diderot, Paris, France Theofanis K. Chatzistamatiou,     Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens, Greece Audrey Cras Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Cell Therapy Unit, Cord Blood Bank and CIC-BT501, Paris, France INSERM UMRS 1140, Paris Descartes, Faculté de Pharmacie, Paris, France Robert Danby Department of Haematology, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, UK NHS Blood and Transplant, Oxford Centre, John Radcliffe Hospital, Oxford, UK Francesco Dazzi,     Regenerative Medicine, Department of Haematology, King’s College London, London, UK Amalia Dinou,     Hellenic Cord Blood Bank, Biomedical Research Foundation of Academy of Athens, Athens, Greece Dominique Farge,     Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Internal Medicine and Vascular Disease Unit, CIC-BT501, Paris, France Lydia Foeken,     World Marrow Donor Association, WMDA Office, Leiden, The Netherlands Antonio Galleu,     Regenerative Medicine, Department of Haematology, King’s College London, London, UK Marietta Giannakou,     MEP, Head of the Greek EPP Parliamentary Delegation, Former Minister of National Education and Religious Affairs, Former Minister of Health, Welfare and Social Security Vasiliki Gkioka Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens (BRFAA), Greece Evaluation Expert, Hellenic Transplant Organization, Athens, Greece Aspasia Goula,     Organizational Culture in Health Services, Technological Educational Institute of Athens, Greece Gregory Katz,     ESSEC Business School, Chair of Therapeutic Innovation; Fondation Générale de Santé, Paris, France Cheen P. Khoo Stem Cell Research Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK Gesine Kögler,     Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Duesseldorf, Germany George Koutitsas,     Process Analysis and Strategy Implementation Expert, National Insurance, Athens, Greece Joanne Kurtzberg,     The Robertson Clinical and Translational Cell Therapy Program and Carolinas Cord Blood Bank, Duke University, Durham, NC USA Paul Leeson,     Department of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK Stefanie Liedtke,     Institute for Transplantation Diagnostics and Cell Therapeutics, University of Dusseldorf Medical School, Dusseldorf, Germany Pascale Loiseau,     Laboratoire “Jean Dausset,” Immunology and Histocompatibility Hôpital Saint-Louis AP-HP, Université Paris Diderot, Paris, France Daniel Markeson Stem Cell Research Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK Department of Plastic and Reconstructive Surgery, Stoke Mandeville Hospital, Aylesbury, UK University College London Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, Royal Free Hospital, London, UK Elena Markogianni,     Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens (BRFAA), Greece Emeline Masson,     Laboratoire “Jean Dausset,” Immunology and Histocompatibility Hôpital Saint-Louis AP-HP, Université Paris Diderot, Paris, France Efstathios Michalopoulos,     Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens (BRFAA), Greece Anna Rita Migliaccio,     Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA Maria Mitrossili Health Law of Technological Educational Institute of Athens, Greece Institutional Technological Institute of Athens, Athens, Greece Cristina Navarrete Histocompatibility and Immunogenetic Services and NHS-Cord Blood Bank, National Blood and Transplant (NHSBT), England, UK Division of Infection and Immunity, University College London, London, UK Laura Newton Stem Cell Research Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK Department of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK Yannis Nikolados,     Economists in Health Management, Technological Institute of Athens, Greece Amanda L. Olson,     MD Anderson Center, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, Houston, Texas, USA Paul J. Orchard,     Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA Daniela Orsini,     World Marrow Donor Association, WMDA Office, Leiden, The Netherlands Andreas Papassavas,     Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens (BRFAA), Greece Thalia Papayannopoulou,     Department of Medicine/Hematology, University of Washington, Seattle, WA, USA George Pierrakos,     Primary Health Management, Technological Educational Institute of Athens, Greece Sergio Querol,     Barcelona Cord Blood Bank and Haematopoietic Progenitor Cell Unit, Banc Sang i Teixits, Barcelona, Spain Teja Falk Radke,     Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Duesseldorf, Germany Paolo Rebulla,     Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy Vanderson Rocha Department of Haematology, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, UK NHS Blood and Transplant, Oxford Centre, John Radcliffe Hospital, Oxford, UK Eurocord, Hôpital Saint Louis APHP, University Paris VII IUH, Paris, France Marcos Sarris,     Health and Sociology and Quality of Life, Technological Educational Institute of Athens, Greece Aurore Saudemont,     Anthony Nolan Research Institute and University College London, London, UK Andromachi Scaradavou National Cord Blood Program, New York Blood Center, New York, NY, USA Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA Markella Serafetinidi,     Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens (BRFAA), Greece Elizabeth J. Shpall,     MD Anderson Center, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, Houston, Texas, USA Angela R. Smith,     Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA Sotiris Soulis,     Health Economics and Social Protection, Technological Educational Institute of Athens,...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.