Tanaka | Ion Exchange Membranes | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band Volume 12, 522 Seiten

Reihe: Membrane Science and Technology

Tanaka Ion Exchange Membranes

Fundamentals and Applications
2. Auflage 2015
ISBN: 978-0-444-66321-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Fundamentals and Applications

E-Book, Englisch, Band Volume 12, 522 Seiten

Reihe: Membrane Science and Technology

ISBN: 978-0-444-66321-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Fundamental study and industrial application of ion exchange membranes started over half a century ago. Through ongoing research and development, ion exchange membrane technology is now applied to many fields and contributes to the improvement of our standard of living. Ion Exchange Membranes, 2nd edition states the ion exchange membrane technology from the standpoint of fundamentals and applications. It discusses not only various phenomena exhibited by membranes but also their applications in many fields with economical evaluations. This second edition is updated and revised, featuring ten expanded chapters. New to this edition is a computer simulation program of ion-exchange membrane electrodialysis for water desalination that provides a guideline for designing, manufacturing and operating a practical-scale electrodialyzer. Meant to replace experiments, this program will be an important asset to those with time and monetary budgets. - New edition features ten revised and expanded chapters, providing the latest developments in ion exchange membrane technology - Computer simulation program, accessible through a companion website, provides a guideline for designing, manufacturing and operating practical-scale electrodialyzers - Attractive visual presentation, including many figures and diagrams

Tanaka Ion Exchange Membranes jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Ion Exchange Membranes;4
3;Copyright;5
4;Contents;6
5;Author Biography;22
6;Preface;28
7;Part 1 - Fundamentals;30
7.1;1 - Preparation of Ion Exchange Membranes;32
7.1.1;1.1 Introduction;32
7.1.2;1.2 Hydrocarbon Ion Exchange Membranes;33
7.1.3;1.3 Homogeneous Membranes;35
7.1.4;1.4 Heterogeneous Membranes;42
7.1.5;1.5 Graft Copolymerization;44
7.1.6;1.6 Bipolar Membranes;46
7.1.7;1.7 Fluorocarbon Membranes;51
7.1.8;References;55
7.2;2 - Fundamental Properties of Ion Exchange Membranes;58
7.2.1;2.1 Introduction;58
7.2.2;2.2 Ionic Transport Across the Membrane;58
7.2.3;2.3 Membrane Potential;65
7.2.4;2.4 Diffusion;67
7.2.5;2.5 Perm-Selectivity;70
7.2.6;2.6 Electric Conductivity;78
7.2.7;2.7 Osmosis;82
7.2.8;2.8 Electro-Osmosis;85
7.2.9;2.9 Ion Exchange Capacity and Water Content;87
7.2.10;2.10 Swelling Ratio;88
7.2.11;2.11 Mechanical Strength;89
7.2.12;2.12 Characteristics of Commercially Available Ion Exchange Membranes;89
7.2.13;References;93
7.3;3 - Theory of Teorell, Meyer, and Sievers (TMS Theory);96
7.3.1;3.1 Introduction;96
7.3.2;3.2 Membrane Potential;96
7.3.3;3.3 Diffusion Coefficient;98
7.3.4;3.4 Electric Conductivity;100
7.3.5;3.5 Transport Number;101
7.3.6;References;102
7.4;4 - Irreversible Thermodynamics;104
7.4.1;4.1 Introduction;104
7.4.2;4.2 Phenomenological Equation and Phenomenological Coefficient;104
7.4.3;4.3 Membrane Phenomena;107
7.4.4;4.4 Reflection Coefficient;109
7.4.5;4.5 Electrodialysis Phenomena;110
7.4.6;4.6 Separation of Salt and Water by Electrodialysis;113
7.4.7;References;114
7.5;5 - Overall Mass Transport;116
7.5.1;5.1 Introduction;116
7.5.2;5.2 Electrodialysis of Saline Water and Overall Mass Transport Equation;116
7.5.3;5.3 Ion Exchange Membrane Pair Characteristics;118
7.5.4;5.4 Overall Mass Transport and Electrodialysis of Seawater;120
7.5.5;5.5 Overall Mass Transport Equation and Phenomenological Equation;122
7.5.6;5.6 Reflection Coefficient of Ion Exchange Membranes;124
7.5.7;References;128
7.6;6 - Concentration Polarization;130
7.6.1;6.1 Introduction;130
7.6.2;6.2 Current–Voltage (I–V) Relationship;130
7.6.3;6.3 Concentration Changes in a Boundary Layer;133
7.6.4;6.4 Mass Transport in a Boundary Layer;135
7.6.5;6.5 Space Charge;138
7.6.6;6.6 Gravitational Convection;139
7.6.7;6.7 Electroconvection;141
7.6.8;6.8 Fluctuation;142
7.6.9;6.9 Concentration Polarization Generated on a Concentrating Surface of an Ion Exchange Membrane;147
7.6.10;References;149
7.7;7 - Water Dissociation;152
7.7.1;7.1 Introduction;152
7.7.2;7.2 Current–pH Relationship;152
7.7.3;7.3 Diffusional Model;154
7.7.4;7.4 Repulsion Zone;155
7.7.5;7.5 Wien Effect;156
7.7.6;7.6 Protonation and Deprotonation Reaction;157
7.7.7;7.7 Experimental Research on the Water Dissociation Reactions;158
7.7.8;7.8 Mechanism of the Water Dissociation Reaction;173
7.7.9;References;187
7.8;8 - Hydrodynamics;190
7.8.1;8.1 Introduction;190
7.8.2;8.2 Stream Lines Around a Spacer;190
7.8.3;8.3 Mass Transport Effect of a Spacer;191
7.8.4;8.4 Dead Space Around a Spacer and Limiting Current Density;195
7.8.5;8.5 Flow Pattern Image in a Flow Channel;197
7.8.6;8.6 Flow Pattern and Limiting Current Density;198
7.8.7;8.7 Local Flow Distribution in a Flow Channel;199
7.8.8;8.8 Solution Velocity Distribution Between Desalting Cells;201
7.8.9;8.9 Air Bubble Cleaning of a Flow Channel;205
7.8.10;8.10 Solution Flow and Mass Transport in a Channel without a Spacer;206
7.8.11;8.11 Velocity Profile in a Flow Channel with a Spacer;208
7.8.12;8.12 Spacer Mesh Step Model and Mass Transport in a Boundary Layer;212
7.8.13;8.13 Spacer Geometry and Pressure Drop in a Flow Channel;214
7.8.14;8.14 Friction Factor of a Solution and Solution Velocity Distribution in Each Desalting Cell ();215
7.8.15;8.15 Pressure Distribution in a Duct in an Electrodialyzer ();221
7.8.16;References;226
7.9;9 - Limiting Current Density;228
7.9.1;9.1 Introduction;228
7.9.2;9.2 Nernst Diffusion Model;228
7.9.3;9.3 Limiting Current Density Equation Introduced from the Nernst–Planck Equation;231
7.9.4;9.4 Limiting Current Density Equation Introduced by Means of Chemical Engineering Techniques;232
7.9.5;9.5 Dependence of Limiting Current Density on Salt Concentration, Solution Velocity, and Temperature;239
7.9.6;9.6 Limiting Current Density of an Electrodialyzer;242
7.9.7;References;243
7.10;10 - Leakage;244
7.10.1;10.1 Introduction;244
7.10.2;10.2 Electric Current Leakage;244
7.10.3;10.3 Solution Leakage ();252
7.10.4;References;256
7.11;11 - Membrane Deterioration;258
7.11.1;11.1 Introduction;258
7.11.2;11.2 Membrane Characteristic Stability Against Various Agents;258
7.11.3;11.3 Performance Changes of Ion Exchange Membranes in Long-term Seawater Electrodialysis;263
7.11.4;11.4 Surface Fouling;266
7.11.5;11.5 Organic Fouling;272
7.11.6;References;280
8;Part 2 - Applications;282
8.1;12 - Electrodialysis;284
8.1.1;12.1 Overview of Technology;284
8.1.2;12.2 Electrodialyzer;284
8.1.3;12.3 Maintenance Technology;290
8.1.4;12.4 Practice;294
8.1.5;References;321
8.2;13 - Computer Simulation Program: Single-Pass (Continuous) Program;324
8.2.1;13.1 Introduction;324
8.2.2;13.2 Single-Pass (Continuous) ED Process;325
8.2.3;13.3 Mass Transport in Single-Pass (Continuous) Process;326
8.2.4;13.4 Specifications and Operating Conditions of an Electrodialyzer;327
8.2.5;13.5 Overall Mass Transport Equation and Membrane Characteristics (Sections 5.2 and 5.3);328
8.2.6;13.6 Salt Concentration and Linear Velocity in Desalting Cells;329
8.2.7;13.7 Salt Concentration and Linear Velocity in Concentrating Cells;331
8.2.8;13.8 Physical Properties of Solutions in Desalting and Concentrating Cells;332
8.2.9;13.9 Electric Resistance of an Ion Exchange Membrane Pair and Solutions in Desalting and Concentrating Cells (Section 2.6.3);332
8.2.10;13.10 Pressure Drop in Desalting and Concentrating Cells and Slots (Section 8.13);333
8.2.11;13.11 Current Density Distribution;334
8.2.12;13.12 Cell Voltage, Energy Consumption, Water Recovery, and Desalting Ratio;338
8.2.13;13.13 Limiting Current Density (Sections 9.5 and 9.6);338
8.2.14;13.14 ED Program;340
8.2.15;13.15 Companion Site (Chapter 24);345
8.2.16;13.16 Process Specifications and ED Conditions;345
8.2.17;13.17 Computed Results;346
8.2.18;References;350
8.3;14 - Computer Simulation Program: Feed-and-Bleed Program;352
8.3.1;14.1 Introduction;352
8.3.2;14.2 Feed-and-Bleed Process;352
8.3.3;14.3 Specifications and Operating Conditions of an Electrodialyzer;353
8.3.4;14.4 Functions and Performance of an Electrodialyzer;354
8.3.5;14.5 Mass Balance and Energy Consumption in the Feed-and-Bleed Process ();354
8.3.6;14.6 Electrodialysis Program;355
8.3.7;14.7 Companion Site (Chapter 24);357
8.3.8;14.8 Process Specifications and ED Conditions;357
8.3.9;14.9 Computed Results;358
8.3.10;References;361
8.4;15 - Computer Simulation Program: Batch Program;362
8.4.1;15.1 Introduction;362
8.4.2;15.2 Batch Electrodialysis Process;363
8.4.3;15.3 Specifications and Operating Conditions of an Electrodialyzer;363
8.4.4;15.4 Performance of an Electrodialyzer: Step 1 ();363
8.4.5;15.5 Relationship between Operation Time and the Performance of an Electrodialyzer in a Batch Operation: the Open/Shut Solution ...;367
8.4.6;15.6 Program and Computation with Companion Site (Chapter 24);370
8.4.7;References;372
8.5;16 - Electrodialysis Reversal;374
8.5.1;16.1 Overview of Technology;374
8.5.2;16.2 Spacer;374
8.5.3;16.3 Water Recovery;378
8.5.4;16.4 Prevention of Scale Formation;379
8.5.5;16.5 Anti-Organic Fouling;380
8.5.6;16.6 Colloidal Deposit Formation on the Membrane Surface and Its Removal;382
8.5.7;16.7 Nitrate and Nitrite Removal;383
8.5.8;16.8 Practice;385
8.5.9;References;395
8.6;17 - Bipolar Membrane Electrodialysis;398
8.6.1;17.1 Overview of Technology;398
8.6.2;17.2 Free Energy Changes in BMP Electrodialysis Process;400
8.6.3;17.3 Interface Layer;401
8.6.4;17.4 Structural Heterogeneity of the Membrane Surface;402
8.6.5;17.5 Water Dissociation Reaction;403
8.6.6;17.6 Current Efficiency;405
8.6.7;17.7 Energy Consumption and Production Capacity;407
8.6.8;17.8 Water Transfer;408
8.6.9;17.9 Rectification Effect;411
8.6.10;17.10 Desirable Properties and Operational Problems in BMP Electrodialysis Process;412
8.6.11;17.11 Practice;413
8.6.12;References;419
8.7;18 - Electro-Deionization;422
8.7.1;18.1 Overview of Technology;422
8.7.2;18.2 Mixed-Bed, Layered-Bed, and Separated-Bed;424
8.7.3;18.3 Structure of the Electrodeionization Unit and Energy Consumption;426
8.7.4;18.4 Mass Transport and Water Dissociation;427
8.7.5;18.5 Removal of Weakly Ionized Species;430
8.7.6;18.6 Practice;434
8.7.7;References;441
8.8;19 - Electrolysis;444
8.8.1;19.1 Overview of Technology;444
8.8.2;19.2 Ion Exchange Membrane;446
8.8.3;19.3 Mass Transport and Electrode Reactions in an Electrolysis System;451
8.8.4;19.4 Electrolyzer and Its Performance;455
8.8.5;19.5 Purification of Saltwater;459
8.8.6;19.6 Research and Development;464
8.8.7;References;464
8.9;20 - Diffusion Dialysis;466
8.9.1;20.1 Overview of Technology;466
8.9.2;20.2 Transport Phenomena;466
8.9.3;20.3 Diffusion Dialyzer and Its Operation;468
8.9.4;20.4 Practice;470
8.9.5;References;473
8.10;21 - Donnan Dialysis;474
8.10.1;21.1 Overview of Technology;474
8.10.2;21.2 Mass Transport;475
8.10.3;21.3 Practice;481
8.10.4;References;485
8.11;22 - Fuel Cell;488
8.11.1;22.1 Overview of Technology;488
8.11.2;22.2 Principle;488
8.11.3;22.3 Parts of a Fuel Cell;491
8.11.4;22.4 Performance of Fuel Cells;495
8.11.5;22.5 Practice;496
8.11.6;References;499
8.12;23 - Redox Flow Battery;500
8.12.1;23.1 Overview of Technology;500
8.12.2;23.2 Principle;500
8.12.3;23.3 Advantages and Disadvantages of the Redox Flow Battery;502
8.12.4;23.4 Parts of the Redox Flow Battery;504
8.12.5;23.5 Ion Exchange Membrane;505
8.12.6;23.6 Operation;508
8.12.7;23.7 Practice;508
8.12.8;References;512
8.13;24 - Companion Site;516
8.13.1;24.1 Introduction;516
8.13.2;24.2 Companion Site;516
8.13.3;24.3 Web Site Address;517
9;Index;518


Author Biography


Yoshinobu Tanaka


Educational Career


Graduated from Tokyo University of Science in 1959

Professional Experience


Joined Japan Monopoly Corporation (now Japan Tobacco Inc.) in 1959.
Investigated ion exchange membranes at Central Research Institute and Odawara Experimental Station. Carried out the following research and development for industrial application of ion exchange membranes.
Preparation of ion exchange membranes
Measurement of membrane characteristics and electrodialysis phenomena
Maintenance and trouble prevention in electrodialyzer operations
Designing and manufacturing of electrodialyzers etc.
Retired from Japan Tobacco Inc. in 1996.
Established IEM Research in 1996 and continued the investigation on ion exchange membranes up to the present.

Degree


1983—Doctor of Engineering; Tokyo University

Activation in Academic Societies


Member of planning board and editorial board
Japan Association of Ion exchange
Society of Sea Water Science Japan
International journal, Membrane Water Treatment
Lead Guest Editor: Special Issue on Ion Exchange Membranes; International Journal of Chemical Engineering (2012)
Tokyo Institute of Technology Lecturer (1994–1995)

Award


1984—Society of Sea Water Science Japan; Science prize
1998—Japan Association of Ion Exchange; Achievement prize
Publication
Books

Electrodialysis. In: Theory and Design of Membrane Separation Process. Tokyo: Industrial Publishing & Consulting Inc.; 1993.

Electrodialysis in membrane separation. In: Membrane Separation Technology Handbook. Tokyo: Industrial Publishing & Consulting Inc.; 1990.

Fundamental theory and experimental method in ion exchange membrane electrodialysis. In: Advanced Membrane Separation Technology Handbook. Tokyo: Science Forum Co.; 1987.

Ion exchange and ion exchange membranes. In: Functions and Applications of Ion Exchange Membranes. Tokyo: Industrial Publishing & Consulting Inc.; 2004.

Ion exchange membranes: fundamentals and applications first ed. 2007. In: Membrane Science Technology Series 12. Amsterdam: Elsevier; 2010 The book is translated into Chinese and published from Chemical Engineering Publication, Beijing.

Ion exchange membrane experimental method. In: Membrane Science Experimental Method. Tokyo: Kitami Shobo Co.; 1984.

Ion Exchange Membrane Electrodialysis: Fundamentals, Desalination, Separation. New York: Nova Science Publishers; 2010.

Ion exchange membrane salt production. In: Sea Water, its Property and Technology. Tokyo: Tokai University Press; 1994.

Ion exchange membrane separation technology. In: Ion Exchange: Fundamentals of Advanced Separation Technology. Tokyo: Kodansya Scientific Co.; 1991.

Mass transport in ion exchange membrane. In: Encyclopedia of Membrane Science Technology. Hoboken: John Wiley & Sons; 2013.

Principles of ion exchange membrane electrodialysis for saline water desalination. In: Ion Exchange Technology. New York: Springer; 2012.

Resources dissolving in seawater. In: Advanced Membrane Treatment Technology and its Applications. Tokyo: Fuji Techno System Co; 1984.

Journals

Acceleration of water dissociation generated in an ion exchange membrane. J. Membr. Sci. 2007;303:234–243.

A computer simulation of continuous ion exchange membrane electrodialysis for desalination of saline water. Desalination. 2009;249:809–821.

A computer simulation of batch ion exchange membrane electrodialysis for desalination of saline water. Desalination. 2009;249:1039–1047.

A computer simulation of feed and bleed ion exchange membrane electrodialysis for desalination of saline water. Desalination. 2010;254:99–107.

A computer simulation of ion exchange membrane electrodialysis for concentration of seawater. Membr. Water Treat. 2010;1:13–37.

Boundary layer phenomena in ion exchange membrane electrodialysis. Chem. Eng. 1993;38:342–346.

Concentration polarization and water dissociation in ion exchange membrane electrodialysis. J. Electrochem. Soc. Jpn. 1974;42:450–456 43, 1975, 584–588: 50, 1982, 667–672; 821–824: 51, 1983, 465–470; 267–271.

Changes of membrane electric resistance and water dissociation generation in the treatment giving low permeability for bivalent ions to cation exchange membranes. Bull. Soc. Sea Water Sci. Jpn. 1977;31:123–127.

Current density distribution around an insulator in an ion exchange membrane electrodialyzer. Bull. Soc. Sea Water Sci. Jpn. 1984;37:295–298.

Concentration polarization and water dissociation in ion-exchange membrane electrodialysis: mechanism of water dissociation. J. Chem. Soc. Faraday Trans. 1. 1986;82:2065–2077.

Concentration polarization in ion exchange membrane electrodialysis. J. Membr. Sci. 1991;57:217–235.

Concentration polarization in a substance layer attached to an ion exchange membrane. Bull. Soc. Sea Water Sci. Jpn. 1997;51:228–236.

Concentration polarization, limiting current density and water dissociation in ion exchange membrane electrodialysis. J. Ion. Exch. 1997;8:14–28.

Current density distribution and limiting current density in ion-exchange membrane electrodialysis. J. Membr. Sci. 2000;173:179–190.

Current density distribution, limiting current density and saturation current density in an ion-exchange membrane electrodialyzer. J. Membr. Sci. 2002;210:65–75.

Concentration polarization in ion-exchange membrane electrodialysis – the events arising in a flowing solution in a desalting cell. J. Membr. Sci. 2003;216:149–164.

Concentration polarization in ion-exchange membrane electrodialysis, the events arising in an unforced flowing solution in a desalting cell. J. Membr. Sci. 2004;244:1–16.

Continuous ion-exchange membrane electrodialysis of mother liquid from a salt-manufacturing plant and transport of Cl- ions and so42- ions. Membr. Water Treat 3, 2012, 63–76.

Distribution of electrodialytic conditions and limiting current density in ion exchange membrane electrodialyzer. J. Electrochem. Soc. Jpn. 1977;45:16–21.

Distribution of electrodialytic conditions in an electrodialyzer and limiting current density. J. Membr. Sci. 1994;92:217–228.

Development of a computer simulation program of batch ion-exchange membrane electrodialysis for saline water desalination. Desalination. 2013;320:118–133.

Development of a computer simulation program of feed-and-bleed ion-exchange membrane electrodialysis for saline water desalination. Desalination. 2014;342:126–138.

Electrodialysis of solutions of high-temperature and high-concentration with ion exchange membranes. Bull. Soc. Sea Water Sci. Jpn. 1970;24:104–128 25, 1971, 189–197: 26, 1972, 74–83.

Effect of electric field in the treatment giving low permeability for bivalent ions to cation exchange membranes. Bull. Soc. Sea Water Sci. Jpn. 1978;32:95–99.

Effects of temperature on ion exchange membrane electrodialysis. Bull. Soc. Sea Water Sci. Jpn. 1980;34:31–36.

Electrodialysis process in a salt manufacturing plant. Bull. Soc. Sea Water Sci. Jpn. 1980;34:61–90.

Electrochemical studies on ion exchange membranes and electrodialysis phenomena. Bull. Soc. Sea Water Sci. Jpn. 1985;38:257–282.

Electrochemical properties of ion exchange membranes. Ionics. October 1985:151–162.

Effect of red tide on limiting current density. Bull. Soc. Sea Water Sci. Jpn. 1993;47:4–10.

Electrochemical dissociation of water molecules generated in an interfacial layer on an ion exchange membrane. Bull. Soc. Sea Water Sci. Jpn. 1993;47:242–247.

Ionic transport in a boundary layer in ion exchange membrane electrodialysis. J. Ion. Exch. 1998;9:2–13.

Ion-exchange membrane electrodialytic salt production using brine discharged from a reverse osmosis seawater desalination plant. J. Membr. Sci. 2003;222:71–86.

Irreversible thermodynamics and overall mass transport in ion-exchange membrane electrodialysis. J. Membr. Sci. 2006;281:517–531.

Ion-exchange membrane electrodialysis for saline water desalination and its application to seawater concentration. Ind. Eng. Chem. Res. 2011;50:7494–7503.

Ion-exchange membrane electrodialysis of saline water and its numerical analysis. Ind. Eng. Chem. Res. 2011;50:10765–10777.

Ion-exchange membrane electrodialysis program and its application to multi-stage continuous saline water desalination. Desalination. 2012;301:10–25.

Limiting current density in the ion exchange membrane electrodialysis. Bull. Soc. Sea Water...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.