Tiwari / Hihara / Rawlins | Intelligent Coatings for Corrosion Control | E-Book | sack.de
E-Book

E-Book, Englisch, 746 Seiten

Tiwari / Hihara / Rawlins Intelligent Coatings for Corrosion Control


1. Auflage 2014
ISBN: 978-0-12-411534-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 746 Seiten

ISBN: 978-0-12-411534-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Intelligent Coatings for Corrosion Control covers the most current and comprehensive information on the emerging field of intelligent coatings. The book begins with a fundamental discussion of corrosion and corrosion protection through coatings, setting the stage for deeper discussion of the various types of smart coatings currently in use and in development, outlining their methods of synthesis and characterization, and their applications in a variety of corrosion settings. Further chapters provide insight into the ongoing research, current trends, and technical challenges in this rapidly progressing field. - Reviews fundamentals of corrosion and coatings for corrosion control before delving into a discussion of intelligent coatings-useful for researchers and grad students new to the subject - Covers the most current developments in intelligent coatings for corrosion control as presented by top researchers in the field - Includes many examples of current and potential applications of smart coatings to a variety of corrosion problems

Tiwari / Hihara / Rawlins Intelligent Coatings for Corrosion Control jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Intelligent Coatings for Corrosion Control;4
3;Copyright;5
4;Contents;6
5;Contributors;14
6;Preface;18
7;Chapter 1: Electrochemical Aspects of Corrosion-Control Coatings;20
7.1;1.1. Introduction;20
7.2;1.2. Corrosion;21
7.2.1;1.2.1. Thermodynamics;21
7.2.2;1.2.2. Kinetics;22
7.3;1.3. Coatings;26
7.3.1;1.3.1. Barrier coatings;26
7.3.2;1.3.2. Corrosion inhibitive coatings;29
7.3.3;1.3.3. Cathodic-protection coatings;31
7.3.3.1;1.3.3.1. Sacrificial metallic coatings;31
7.3.3.2;1.3.3.2. N-type semiconductor coatings;32
7.3.4;1.3.4. Coating systems;33
7.4;1.4. Conclusions;34
7.5;References;34
8;Chapter 2: The Importance of Corrosion and the Necessity of Applying Intelligent Coatings for Its Control;36
8.1;2.1. Introduction;36
8.2;2.2. Low Temperature Intelligent Coatings;39
8.3;2.3. Encapsulation for Self-Healing Coatings;41
8.4;2.4. Cathodic Protection;48
8.4.1;2.4.1. Sacrificial anodes;48
8.4.1.1;2.4.1.1. Advantages of sacrificial anodes;48
8.4.1.2;2.4.1.2. Disadvantages of sacrificial anodes;49
8.4.2;2.4.2. ICCP system;49
8.4.2.1;2.4.2.1. Advantages of ICCP system;49
8.5;2.5. High Temperature Intelligent Coatings;49
8.6;2.6. Hot Corrosion;52
8.6.1;2.6.1. Types of hot corrosion;53
8.6.2;2.6.2. Mechanism of hot corrosion;53
8.6.2.1;2.6.2.1. Incubation period;53
8.6.2.2;2.6.2.2. Initiation stage;54
8.6.2.3;2.6.2.3. Propagation stage;54
8.6.3;2.6.3. Hot corrosion of superalloys;56
8.6.4;2.6.4. Oxidation characteristics of DMS-4;59
8.7;2.7. Surface Coating Technologies;60
8.7.1;2.7.1. Diffusion coatings;61
8.7.2;2.7.2. Overlay coatings;61
8.7.3;2.7.3. Surface engineering techniques;63
8.7.3.1;2.7.3.1. Thermal spraying processes;63
8.7.3.2;2.7.3.2. Electron beam physical vapor deposition (EB-PVD) processes;64
8.8;2.8. Influence of Major and Trace Elements;66
8.9;2.9. Concept of Intelligent Coatings;67
8.9.1;2.9.1. Preparation and selection of a suitable surface engineering technique;68
8.9.2;2.9.2. Techniques for assessment of intelligent coatings;69
8.9.3;2.9.3. Performance of a developed intelligent coating;71
8.10;2.10. Conclusion and Outlook;74
8.11;References;75
9;Chapter 3: Smart Inorganic and Organic Pretreatment Coatings for the Inhibition of Corrosion on Metals/Alloys ;78
9.1;3.1. Introduction;78
9.1.1;3.1.1. Corrosion—definition;79
9.1.2;3.1.2. Costs of metallic corrosion/prevention;81
9.1.3;3.1.3. Corrosion costs to national economies;82
9.2;3.2. Designing Smart Coatings for Corrosion Protection;83
9.3;3.3. Pretreatment Coatings;83
9.3.1;3.3.1. Selecting the proper metal alloy;83
9.3.2;3.3.2. Surface modification;84
9.4;3.4. Nonmetallic-Inorganic Pretreatment Coatings;85
9.4.1;3.4.1. Conversion coatings;86
9.4.1.1;3.4.1.1. Chromate conversion coatings;86
9.4.1.2;3.4.1.2. Phosphate conversion coatings;88
9.4.1.3;3.4.1.3. Lanthanide-based conversion coatings;88
9.4.1.4;3.4.1.4. Miscellaneous-based conversion coatings;90
9.5;3.5. Organic Pretreatment Coatings;91
9.5.1;3.5.1. Hybrid sol-gel coatings;91
9.5.2;3.5.2. Conductive polymer coatings;93
9.5.3;3.5.3. Self-assembling pretreatment coatings;95
9.5.4;3.5.4. Polyelectrolyte multilayer films;96
9.5.5;3.5.5. Controlled release coatings containing inhibitor-loaded nanocontainers;97
9.5.6;3.5.6. Biofilms as pretreatment coatings;97
9.6;3.6. Conclusions;98
9.7;Acknowledgments;98
9.8;References;98
10;Chapter 4: Low Temperature Coating Deriving from Metal-Organic Precursors: An Economical and Environmentally Benign Approach;112
10.1;4.1. Introduction;113
10.2;4.2. Chemical Vapor Deposition: MOCVD Variant Techniques;115
10.2.1;4.2.1. Laser-induced chemical vapor deposition;117
10.2.2;4.2.2. UV-induced chemical vapor deposition;118
10.2.3;4.2.3. Plasma-enhanced CVD;118
10.2.4;4.2.4. Electron beam chemical vapor deposition;120
10.2.5;4.2.5. Fluidized bed chemical vapor deposition;121
10.2.6;4.2.6. Atomic layer deposition (ALD);121
10.2.7;4.2.7. Focused ion-assisted chemical vapor deposition (IACVD);123
10.3;4.3. Organometallic Precursors: Economical Bulk Synthesis;124
10.3.1;4.3.1. Organometallic precursors: oxide ceramics;125
10.3.1.1;4.3.1.1. Alumina precursors;125
10.3.1.1.1;4.3.1.1.1. Synthesis of aluminum isopropoxide;125
10.3.1.1.2;4.3.1.1.2. Synthesis of Al-acetylacetonate;126
10.3.1.2;4.3.1.2. Zirconia, silica, titania precursors;126
10.3.1.2.1;4.3.1.2.1. Titania precursors: sol-gel;127
10.3.1.2.2;4.3.1.2.2. Silica precursor: sol-gel;128
10.3.1.2.3;4.3.1.2.3. Zirconia precursor: sol-gel;128
10.3.1.2.4;4.3.1.2.4. Zirconia, yttria, silica precursors: CVD precursors;129
10.3.2;4.3.2. Organometallic precursors: nonoxide ceramics;131
10.3.2.1;4.3.2.1. Pt, Al, W, Mo precursors;131
10.3.2.2;4.3.2.2. ZrCN and TiCN precursors;133
10.3.2.3;4.3.2.3. SiC precursors;135
10.4;4.4. Liquid Delivery Systems: Effect of Solvent;141
10.5;4.5. Organometallic Precursor Chemistry;143
10.6;4.6. Nucleation and Growth Mechanisms;144
10.7;4.7. Coating Damage Mechanisms;145
10.8;4.8. Conclusion and Outlook;147
10.9;References;148
11;Chapter 5: Synthesis and Evaluation of Self-Healing Cerium-Doped Silane Hybrid Coatings on Steel Surfaces;154
11.1;5.1. Introduction;154
11.2;5.2. Experimental Procedure;156
11.2.1;5.2.1. Sample preparation;156
11.2.2;5.2.2. Analytical methods;157
11.3;5.3. Results and Discussion;158
11.3.1;5.3.1. Effects of cerium ions and BPA on the microstructure and the corrosion protection of SHCs on 304L stainless steel;158
11.3.2;5.3.2. Electrochemical assessment of the self-healing properties of SHCs modified with cerium nitrate and cerium oxide nano ...;171
11.3.3;5.3.3. Influence of cerium concentration on the microstructural features and corrosion protection of the cerium-doped SHCs ...;180
11.3.4;5.3.4. Evaluation of corrosion inhibition by silane coatings filled with cerium salt-activated nanoparticles on HDG substra ...;193
11.4;5.4. Conclusion and Outlook;211
11.5;References;212
12;Chapter 6: Hybrid Zinc-Rich Paint Coatings: The Impact of Incorporation of Nano-Size Inhibitor and Electrical Conducting P ...;214
12.1;6.1. Introduction;215
12.2;6.2. Experimental;218
12.2.1;6.2.1. Materials and synthesis;218
12.2.1.1;6.2.1.1. Preparation of the nano-size particles;218
12.2.1.2;6.2.1.2. Preparation of paint coatings;219
12.2.2;6.2.2. Methods;220
12.2.2.1;6.2.2.1. Characterization of the nanotube and the nano-size particles;220
12.2.2.1.1;6.2.2.1.1. Elemental analysis;220
12.2.2.1.2;6.2.2.1.2. Electrokinetic potential;220
12.2.2.1.3;6.2.2.1.3. Cyclic voltammetry;220
12.2.2.1.4;6.2.2.1.4. Fourier-transform infrared spectroscopy;220
12.2.2.1.5;6.2.2.1.5. Transmission electron microscopy;221
12.2.2.1.6;6.2.2.1.6. Rheology;221
12.2.2.2;6.2.2.2. Characterization of paint coatings and low carbon steel substrates;222
12.2.2.2.1;6.2.2.2.1. Electrochemical impedance spectroscopy;222
12.2.2.2.2;6.2.2.2.2. Glow-discharge optical-emission spectroscopy;223
12.2.2.2.3;6.2.2.2.3. X-ray photoelectron spectroscopy;224
12.2.2.2.4;6.2.2.2.4. Immersion and salt-spray chamber corrosion tests;224
12.3;6.3. Results;224
12.3.1;6.3.1. Investigation of the nano-size particles;224
12.3.1.1;6.3.1.1. Cyclic voltammetry;224
12.3.1.2;6.3.1.2. Fourier-transform infrared spectroscopy;226
12.3.1.3;6.3.1.3. Transmission electron microscopy;227
12.3.1.4;6.3.1.4. Rheology characterization of dispersion of the nano-size particles;230
12.3.2;6.3.2. Investigation of the paint coatings and steel substrates;235
12.3.2.1;6.3.2.1. Immersion test with EIS monitoring;235
12.3.2.2;6.3.2.2. Glow-discharge optical-emission spectroscopy;249
12.3.2.3;6.3.2.3. X-ray photoelectron spectroscopy;251
12.3.2.4;6.3.2.4. Salt-spray chamber test;256
12.4;6.4. Discussion;258
12.5;6.5. Conclusion;262
12.6;Acknowledgment;262
12.7;References;263
13;Chapter 7: Innovative Luminescent Vitreous Enameled Coatings;270
13.1;7.1. Introduction;270
13.2;7.2. The Most Important Properties of Vitreous Enamel;271
13.3;7.3. Luminescent Properties;274
13.4;7.4. Luminescent Porcelain Enamel Coatings;274
13.5;7.5. Materials and Experimental Procedures;275
13.6;7.6. Results and Discussion;278
13.6.1;7.6.1. Characterization of enamel layers;278
13.6.2;7.6.2. Trend of protective properties;280
13.6.3;7.6.3. Trend of luminescent properties;294
13.7;7.7. Conclusion;299
13.8;References;300
14;Chapter 8: Anticorrosion Coatings with Self-Recovering Ability Based on Damage-Triggered Micro- and Nanocontainers;302
14.1;8.1. Introduction;302
14.1.1;8.1.1. Corrosion as a global economic problem;302
14.1.2;8.1.2. Methods for combating corrosion: short overview;303
14.2;8.2. Micro- and Nanocontainers-Based Approach to the Protective Organic Coatings: Self-Healing Versus Self-Protecting;306
14.3;8.3. Types of Containers and Methods of Their Preparation;310
14.3.1;8.3.1. Nano- or microcontainers on the basis of LDHs;310
14.3.2;8.3.2. Containers with ceramic core and polyelectrolyte/polymeric shell;311
14.3.3;8.3.3. Containers with ceramic core and stimuli-responsive stoppers at the pores endings;317
14.3.4;8.3.4. Containers on the basis of direct or inverse emulsions;319
14.3.5;8.3.5. Containers based on the interfacial physical phenomena;320
14.3.5.1;8.3.5.1. Containers obtained by means of solvent induced interfacial precipitation;320
14.3.5.2;8.3.5.2. Containers prepared by the use of layer-by-layer (L-b-L) polyelectrolyte interfacial adsorption;324
14.3.5.3;8.3.5.3. Containers on the basis of irreversible interfacial attachment—formation of Pickering emulsions;326
14.3.6;8.3.6. Containers prepared by the interfacial or bulk chemical reactions in emulsion droplets;330
14.3.6.1;8.3.6.1. Containers via interfacial polyaddition/interfacial polycondensation;330
14.3.6.2;8.3.6.2. Containers through in situ emulsion polymerization;334
14.4;8.4. Release of Active Agents from Containers;337
14.5;8.5. Distribution of Containers in the Matrices of Novel Protective Coatings;340
14.6;8.6. Protective Performance of Container-Based Organic Self-Protecting Coatings;341
14.7;8.7. Conclusions;344
14.8;References;346
15;Chapter 9: Important Aspects Involved in Pilot Scale Production of Modern Paints and Coatings;354
15.1;9.1. Introduction;354
15.2;9.2. Definition;355
15.3;9.3. Dispersion Process;356
15.4;9.4. General Process for Paints and Coatings;357
15.5;9.5. Pilot Plants;359
15.5.1;9.5.1. Step by step scaling up;359
15.5.1.1;9.5.1.1. Reactors;359
15.5.1.2;9.5.1.2. General steps involved in scale-up;360
15.5.2;9.5.2. Pilot plant layouts—major issues;361
15.5.3;9.5.3. Process equipment and its support units;361
15.5.4;9.5.4. Types of pilot plant for water and solvent-based polymeric binders;362
15.5.4.1;9.5.4.1. Aqueous emulsion based pilot plant;362
15.5.4.2;9.5.4.2. Solvent-based resin pilot plants;365
15.6;9.6. Major Equipment Used in Paints and Coating Industry;366
15.6.1;9.6.1. Mixers;366
15.6.2;9.6.2. Mills;372
15.6.3;9.6.3. Filters;375
15.7;9.7. General Checkpoints for a Paint and Coating Pilot Plant;376
15.8;9.8. General Safety Precautions in Paint and Coating Pilot Plant;376
15.9;9.9. Typical Example of Pilot Scale Trial and Scale-Up of Acrylic Latex for Coating Applications;377
15.9.1;9.9.1. General process of charging;377
15.9.2;9.9.2. Pilot plant setup;378
15.10;9.10. Conclusion;379
15.11;References;380
16;Chapter 10: Sol-Gel Route for the Development of Smart Green Conversion Coatings for Corrosion Protection of Metal Alloys;382
16.1;10.1. Introduction;382
16.2;10.2. Development of Smart Chemistry;383
16.3;10.3. Characterization Methodology;387
16.3.1;10.3.1. Spectroscopic analysis;387
16.3.1.1;10.3.1.1. FTIR analysis of cured coating and precursor to coatings;388
16.3.1.2;10.3.1.2. Raman analysis of cured coatings and precursor to coatings;388
16.3.1.3;10.3.1.3. NMR analysis of cured coatings and precursor to coatings;390
16.3.1.4;10.3.1.4. XPS analysis of cured coatings;390
16.3.2;10.3.2. Thermal analysis;393
16.3.2.1;10.3.2.1. Thermal analysis of liquid precursor to GCC in inert and air atmosphere;393
16.3.2.2;10.3.2.2. Thermal analysis of solid GCC in inert and air atmosphere;394
16.3.3;10.3.3. Nanoindentation analysis;395
16.3.3.1;10.3.3.1. Estimation of hardness and modulus in GCC;395
16.3.3.2;10.3.3.2. Estimation of adhesion through nanoscratch;397
16.3.3.3;10.3.3.3. Wear analysis of GCC;398
16.3.4;10.3.4. Surface morphology;399
16.3.4.1;10.3.4.1. Surface morphological analysis with FESEM;399
16.3.4.2;10.3.4.2. Surface morphological analysis with TEM;401
16.3.4.3;10.3.4.3. Surface morphological analysis with AFM;401
16.4;10.4. Evaluation of Coating;401
16.4.1;10.4.1. Laboratory experiments;402
16.4.1.1;10.4.1.1. Immersion tests;402
16.4.1.1.1;10.4.1.1.1. Immersion in ASTM seawater and sodium sulfate solution;403
16.4.1.2;10.4.1.2. Surface appearance investigations;404
16.4.1.2.1;10.4.1.2.1. Appearance after immersion in ASTM seawater;404
16.4.1.2.2;10.4.1.2.2. Appearance after immersion in sodium sulfate solution;406
16.4.1.2.3;10.4.1.2.3. Analysis of coupons retrieved after immersion test;408
16.4.1.2.4;10.4.1.2.4. Surface appearance after accelerated weathering according to ASTM-B117 standard;408
16.4.1.2.5;10.4.1.2.5. Analysis of coupons retrieved after accelerated weathering;413
16.4.2;10.4.2. Outdoor experiments;415
16.4.2.1;10.4.2.1. Assessment of corrosion damages;416
16.4.2.2;10.4.2.2. Analysis after UV light exposure test;421
16.5;10.5. Conclusion;423
16.6;References;424
17;Chapter 11: Conducting Polymers with Superhydrophobic Effects as Anticorrosion Coating;428
17.1;11.1. Introduction;428
17.2;11.2. Corrosion Protection;429
17.2.1;11.2.1. Conversion coatings ;429
17.2.2;11.2.2. Organic coatings ;429
17.3;11.3. Conducting Polymer as an Anticorrosion Coating;430
17.3.1;11.3.1. Coating procedure ;431
17.3.1.1;11.3.1.1. Casting-Based Methods;431
17.3.1.2;11.3.1.2. Paint/Resin-Blended Coatings;431
17.3.1.3;11.3.1.3. Electropolymerization/Electrodeposition;431
17.3.1.3.1;11.3.1.3.1. Potentiodynamic Electropolymerization;432
17.3.1.3.2;11.3.1.3.2. Galvanostatic Electropolymerization;432
17.3.1.3.3;11.3.1.3.3. Potentiostatic Electropolymerization;432
17.3.2;11.3.2. Mechanism of protection ;433
17.3.2.1;11.3.2.1. Barrier Protection;433
17.3.2.2;11.3.2.2. Ennobling Mechanism;433
17.3.2.3;11.3.2.3. Polymer is Preferentially Oxidized;433
17.3.2.4;11.3.2.4. Self-Healing;433
17.3.3;11.3.3. E xamples of conducting polymers ;434
17.3.3.1;11.3.3.1. Polyaniline;434
17.3.3.2;11.3.3.2. Polypyrrole;436
17.3.3.3;11.3.3.3. Polythiophene;438
17.4;11.4. Superhydrophobic Coating as an Anticorrosion Coating;438
17.4.1;11.4.1. T heoretical background ;438
17.4.2;11.4.2. F abrication procedures ;440
17.4.2.1;11.4.2.1. Chemical Deposition;440
17.4.2.2;11.4.2.2. Colloidal Assemblies;442
17.4.2.3;11.4.2.3. Other Methods;443
17.5;11.5. Superhydrophobic Conducting Polymers as Anticorrosion Coatings;443
17.6;11.6. Conclusion;446
17.7;Acknowledgments;447
17.8;References;447
18;Chapter 12: Smart Protection of Polymer-Inhibitor Doped Systems;450
18.1;12.1. Introduction;450
18.2;12.2. Rebar Concrete Application;454
18.2.1;12.2.1. Polymer selection;457
18.3;12.3. Electrospun Smart Coating;461
18.4;12.4. Sol-Gel Coatings for Corrosion Control;466
18.4.1;12.4.1. Corrosion applications;469
18.5;12.5. Conclusion;473
18.6;References;474
19;Chapter 13: Properties and Applications of Thermochromic Vanadium Dioxide Smart Coatings;480
19.1;13.1. Introduction and Properties of VO 2 ;480
19.1.1;13.1.1. VO 2 synthesis methods;482
19.1.2;13.1.2. Switching time of the phase transition of VO 2 ;483
19.1.3;13.1.3. Effects of atomic oxygen irradiation on the properties of VO 2 ;485
19.1.4;13.1.4. Doping effects on the phase transition of VO 2 ;485
19.1.4.1;13.1.4.1. Mo dopant and sol-gel VO 2 ;485
19.1.4.2;13.1.4.2. Co-doping VO 2 with W and F;485
19.1.4.3;13.1.4.3. Ce-doped VO 2 ;486
19.1.4.4;13.1.4.4. Comparing W-doped and W-Ti Co-doped VO 2 ;488
19.2;13.2. Applications;490
19.2.1;13.2.1. All-optical switches;490
19.2.2;13.2.2. Electrical switches;492
19.2.3;13.2.3. VO 2 -based hybrid metamaterial devices;492
19.2.3.1;13.2.3.1. Tuneable metamaterial devices;493
19.2.4;13.2.4. VO 2 plasmonic devices;495
19.2.4.1;13.2.4.1. VO 2 -Au nanoparticle composite;495
19.2.4.2;13.2.4.2. Bilayer structure: Au-nanoparticles/VO 2 thin films;497
19.2.4.3;13.2.4.3. Au::VO 2 nano-arrays;498
19.2.5;13.2.5. VO 2 -based RF-microwave switches;500
19.2.6;13.2.6. Smart windows;502
19.3;13.3. Conclusion;503
19.4;References;503
20;Chapter 14: One-Part Self-Healing Anticorrosive Coatings: Design Strategy and Examples;510
20.1;14.1. Introduction;510
20.2;14.2. Design Strategies of One-Part Self-Healing Anticorrosive Coatings;513
20.2.1;14.2.1. Preparation of conventional self-healing materials;513
20.2.2;14.2.2. Design of one-part self-healing anticorrosive coatings;521
20.3;14.3. Examples of One-Part Self-Healing Anticorrosive Coatings;522
20.3.1;14.3.1. Diisocyanate-based one-part self-healing anticorrosive coating;522
20.3.1.1;14.3.1.1. Microencapsulation of diisocyanate via interfacial polymerization;522
20.3.1.2;14.3.1.2. Chemical constituent of microcapsules;525
20.3.1.3;14.3.1.3. Morphology and diameter of microcapsules;526
20.3.1.4;14.3.1.4. Thermal property and core fraction of microcapsules;527
20.3.1.5;14.3.1.5. Preparation of HDI-based self-healing anticorrosive coating;528
20.3.1.6;14.3.1.6. Accelerated salt immersion corrosion test;528
20.3.1.7;14.3.1.7. Salt spray test;531
20.3.1.8;14.3.1.8. Influence of parameters on anticorrosive performance;536
20.3.2;14.3.2. Organic silane-based one-part self-healing anticorrosive coating;538
20.3.2.1;14.3.2.1. Microencapsulation of perfluorooctyl triethoxysilane via in situ polymerization;538
20.3.2.2;14.3.2.2. Chemical constituent of microcapsules;541
20.3.2.3;14.3.2.3. Morphology and diameter of microcapsules;541
20.3.2.4;14.3.2.4. Thermal property and core fraction of microcapsules;543
20.3.2.5;14.3.2.5. Preparation of POTS-based self-healing anticorrosive coating;544
20.3.2.6;14.3.2.6. Accelerated salt immersion corrosion test;544
20.3.2.7;14.3.2.7. Corrosion protection performance of intact coating in HCl solution;545
20.4;14.4. Concluding Remarks and Perspectives;549
20.5;References;551
21;Chapter 15: Intelligent Stannate-Based Coatings of Self-Healing Functionality for Magnesium Alloys;556
21.1;15.1. Introduction;556
21.2;15.2. Types of Magnesium Alloys;557
21.3;15.3. Common Forms of Magnesium Corrosion;557
21.3.1;15.3.1. General corrosion;558
21.3.2;15.3.2. Pitting corrosion;559
21.3.3;15.3.3. Crevice (under deposit) corrosion;560
21.3.4;15.3.4. Filiform corrosion;562
21.3.5;15.3.5. Galvanic corrosion;563
21.3.6;15.3.6. Stress corrosion cracking;564
21.3.7;15.3.7. Intergranular corrosion;565
21.3.8;15.3.8. Corrosion fatigue;565
21.4;15.4. Mitigation of Magnesium Corrosion Using Stannate Conversion Coatings;566
21.4.1;15.4.1. Synthesis and testing of stannate coatings;566
21.4.2;15.4.2. The performance of stannate-based coatings;567
21.4.3;15.4.3. Self-healing functionality of stannate coatings;572
21.5;15.5. Conclusion and Future Remarks;572
21.6;References;573
22;Chapter 16: Electroactive Polymer-Based Anticorrosive Coatings;576
22.1;16.1. Introduction;576
22.2;16.2. Corrosion;577
22.3;16.3. Measures of Corrosion Prevention;578
22.3.1;16.3.1. Inhibitors;578
22.3.2;16.3.2. Cathodic protection;578
22.3.3;16.3.3. Anodic protection;579
22.3.4;16.3.4. Coatings;579
22.3.4.1;16.3.4.1. Metallic and other inorganic coatings;579
22.3.4.2;16.3.4.2. Organic coatings;580
22.4;16.4. Polymer Coatings;581
22.4.1;16.4.1. EAP-based coatings;582
22.4.2;16.4.2. EAP-based nanocomposite coatings;586
22.4.2.1;16.4.2.1. EAP/silicate nanolayer (clay) nanocomposites;588
22.4.2.2;16.4.2.2. EAP/nanoparticle (TiO 2, SiO 2) nanocomposites;590
22.4.2.3;16.4.2.3. EAP/graphene nanocomposites;592
22.4.2.4;16.4.2.4. EAP-based hydrophobic/superhydrophobic coatings;594
22.5;16.5. Conclusions;599
22.6;References;600
23;Chapter 17: Corrosion Protective Coatings for Ti and Ti Alloys Used for Biomedical Implants;604
23.1;17.1. Introduction;604
23.2;17.2. Surface Modification Methods;606
23.3;17.3. Sol-Gel Method;606
23.3.1;17.3.1. Dip-coating;607
23.3.2;17.3.2. Spin-coating;608
23.4;17.4. Laser Oxidation;609
23.5;17.5. Anodic Oxidation;609
23.6;17.6. Plasma Electrolytic Oxidation;610
23.7;17.7. Electrolytic Deposition;610
23.8;17.8. Combined Methods;611
23.9;17.9. Protective Films;611
23.9.1;17.9.1. Oxides;611
23.9.2;17.9.2. Hydroxyapatite;613
23.9.3;17.9.3. Composites;613
23.9.4;17.9.4. Hybrid coatings;613
23.9.5;17.9.5. Ceramic coatings;614
23.10;17.10. Corrosion Studies;615
23.11;17.11. Conclusions;618
23.12;References;618
24;Chapter 18: Optical Sensors for Corrosion Monitoring;622
24.1;18.1. Introduction;622
24.2;18.2. Optical Fiber Interrogation Principles;623
24.2.1;18.2.1. Fiber Bragg gratings;624
24.2.2;18.2.2. Interferometers;625
24.2.3;18.2.3. Distributed sensing;626
24.2.4;18.2.4. Optical intensity modulations;626
24.2.5;18.2.5. Surface plasmon resonances;627
24.3;18.3. Corrosion Measurements;628
24.3.1;18.3.1. Direct measurements of corrosion;628
24.3.2;18.3.2. Corrosivity direct measurements using metallic sacrificial layers;631
24.3.3;18.3.3. Measurement of corrosion products and precursors;636
24.3.3.1;18.3.3.1. Detection of corrosion precursors;638
24.3.3.2;18.3.3.2. Detection of corrosion by-products;641
24.3.4;18.3.4. Relative humidity monitoring for corrosion control;643
24.3.5;18.3.5. Optical pH sensors for corrosion control;645
24.4;18.4. Conclusion and Future Trends;651
24.5;References;652
25;Chapter 19: Characterization of High Performance Protective Coatings for Use on Culturally Significant Works;660
25.1;19.1. Introduction;660
25.1.1;19.1.1. Protective coatings for the conservation of material cultural heritage;660
25.1.2;19.1.2. Defining intelligence: chemical and physical;662
25.1.3;19.1.3. Commonly used coatings in the conservation of cultural heritage;662
25.1.4;19.1.4. Weathering studies of common coatings used in conservation;663
25.1.5;19.1.5. Our method of approach in developing intelligent coatings for material cultural heritage;666
25.1.6;19.1.6. Anticipated challenges with this coating system;667
25.1.7;19.1.7. Using electrochemical impedance spectroscopy to characterize barrier properties of protective films;667
25.2;19.2. Experimental Details;668
25.2.1;19.2.1. Experimental details for coating substrates;668
25.2.2;19.2.2. Experimental details for weathering studies of coated panels;669
25.2.3;19.2.3. Experimental details for characterizing substrates;669
25.3;19.3. Testing and Characterizing the Performance of Chemically Intelligent Coatings;670
25.3.1;19.3.1. Weathering studies of chemically intelligent coatings for outdoor metalwork;670
25.3.2;19.3.2. Characterization of weathered coated substrates by EIS;670
25.3.3;19.3.3. Characterization of weathered coated substrates by FTIR;671
25.4;19.4. Characterizing Physically Intelligent Coatings;673
25.4.1;19.4.1. Use of synthetic nanoclay in waterborne nanocomposites coatings;673
25.4.2;19.4.2. Modification of nanoclays to increase compatibility with the coating;676
25.4.3;19.4.3. Experimental procedures for modification of the nanoclay;676
25.4.4;19.4.4. Characterization of modified Laponite by FTIR;677
25.4.5;19.4.5. Characterization of modified Laponite by X-ray methods;679
25.4.6;19.4.6. Fitting SAXS data;680
25.4.7;19.4.7. Characterization of modified Laponite by AFM;680
25.4.8;19.4.8. Incorporating modified Laponite into coatings;684
25.5;19.5. Testing the Performance of Physically Intelligent Coatings;685
25.5.1;19.5.1. Investigating the barrier properties of waterborne PVDF-clay nanocomposites by EIS: effects of annealing;685
25.5.2;19.5.2. Calculating capacitances and volume fractions of water in electrolyte swollen films;686
25.5.3;19.5.3. Assessment of the effect of intelligent coating;687
25.6;19.6. Conclusions and Future Directions;688
25.7;References;689
26;Chapter 20: Monitoring Corrosion Using Vibrational Spectroscopic Techniques;692
26.1;20.1. Introduction;692
26.2;20.2. Principles;693
26.2.1;20.2.1. Raman spectroscopy;693
26.2.2;20.2.2. IR spectroscopy;695
26.3;20.3. Methods and Equipment;696
26.3.1;20.3.1. Raman spectroscopy;696
26.3.1.1;20.3.1.1. Normal Raman spectroscopy;696
26.3.1.2;20.3.1.2. SERS;697
26.3.2;20.3.2. IR spectroscopy;697
26.3.2.1;20.3.2.1. Cells with optical windows for IR path;697
26.3.2.2;20.3.2.2. ATR;698
26.4;20.4. Applications of In Situ Raman Spectroscopy in Corrosion Science;699
26.4.1;20.4.1. Aqueous corrosion;699
26.4.1.1;20.4.1.1. Anodic oxide film formation;699
26.4.1.2;20.4.1.2. General aqueous corrosion;700
26.4.2;20.4.2. Atmospheric corrosion;701
26.4.3;20.4.3. Corrosion inhibitors;701
26.4.4;20.4.4. Coatings;704
26.4.4.1;20.4.4.1. Conversion coatings;704
26.4.4.2;20.4.4.2. Polymeric coatings;705
26.4.4.2.1;20.4.4.2.1. Epoxy coating;705
26.4.4.2.2;20.4.4.2.2. Electronically conducting polymer coating;706
26.5;20.5. Applications of In Situ FTIR in Corrosion Science;709
26.5.1;20.5.1. Aqueous corrosion;709
26.5.2;20.5.2. Atmospheric corrosion;709
26.5.3;20.5.3. Corrosion inhibitors;710
26.5.4;20.5.4. Coatings;711
26.5.4.1;20.5.4.1. FTIR-reflection spectroscopy;711
26.5.4.2;20.5.4.2. ATR-FTIR;711
26.6;20.6. Conclusion;713
26.7;References;713
27;Index;722



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.