E-Book, Deutsch, Band 56, 181 Seiten, eBook
Toeplitz / Blaschke / Grammel Die Entwicklung der Infinitesimalrechnung
Erscheinungsjahr 2013
ISBN: 978-3-642-49782-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Eine Einleitung in die Infinitesimalrechnung Nach der Genetischen Methode. Erster Band
E-Book, Deutsch, Band 56, 181 Seiten, eBook
Reihe: Grundlehren der mathematischen Wissenschaften
ISBN: 978-3-642-49782-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
I. Das Wesen des unendlichen Prozesses.- § 1. Die Anfänge des infinitesimalen Denkens bei den Griechen.- § 2. Die griechische Proportionenlehre.- § 3. Die Exhaustionsmethode der Griechen.- § 4. Der Zahlbegriff der Neuzeit.- § 5. Die Kreismessung des Archimedes und die Sinustafeln.- § 6. Die unendliche geometrische Reihe.- § 7. Die stetige Verzinsung.- § 8. Periodische Dezimalbrüche.- § 9. Der Begriff der Konvergenz und des Grenzwertes.- § 10. Unendliche Reihen.- II. Das bestimmte Integral.- § 1. Die Parabelquadratur des Archimedes.- § 2. Fortführung nach 1880 Jahren.- § 3. Vom Flächeninhalt zum bestimmten Integral.- § 4. Unstrenge Infinitesimalmethoden.- § 5. Der Begriff des bestimmten Integrals.- § 6. Einige Sätze über das bestimmte Integral.- § 7. Prinzipienfragen.- III. Differential- und Integralrechnung.- § 1. Tangentenaufgaben.- § 2. Umgekehrte Tangentenaufgaben.- § 3. Maxima und Minima.- § 4. Geschwindigkeit.- § 5. Napier.- § 6. Der Fundamentalsatz.- § 7. Die Produktregel.- § 8. Partielle Integration.- § 9. Funktion von Funktion.- § 10. Transformation des Integrals.- § 11. Die inverse Funktion.- § 12. Die trigonometrischen Funktionen.- § 13. Die zyklometrischen Funktionen.- § 14. Die Funktionen von mehreren Funktionen.- § 15. Integration rationaler Funktionen.- § 16. Integration trigonometrischer Ausdrücke.- § 17. Integration von Wurzelausdrücken.- § 18. Die Grenzen expliziter Integration.- § 19. Geschwindigkeit und Beschleunigung.- § 20. Die Pendelbewegung.- § 21. Koordinatentransformation.- § 22. Elastische Schwingungen.- § 23. Die beiden ersten Keplerschen Gesetze.- § 24. Die Herleitung der beiden ersten Keplerschen Gesetze aus dem Newtonschen Gesetz.- § 25. Das 3. Keplersche Gesetz.- Zeittafel.- GeschichtlicheAnmerkungen.- Übungen.- Namenverzeichnis.