Valente de Oliveira / Leite / Rodrigues | Progress in Artificial Intelligence | E-Book | www.sack.de
E-Book

E-Book, Englisch, 522 Seiten

Reihe: Lecture Notes in Computer Science

Valente de Oliveira / Leite / Rodrigues Progress in Artificial Intelligence

24th EPIA Conference on Artificial Intelligence, EPIA 2025, Faro, Portugal, October 1–3, 2025, Proceedings, Part I
Erscheinungsjahr 2025
ISBN: 978-3-032-05176-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

24th EPIA Conference on Artificial Intelligence, EPIA 2025, Faro, Portugal, October 1–3, 2025, Proceedings, Part I

E-Book, Englisch, 522 Seiten

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-032-05176-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This two-volume set LNAI 16121-16122 constitutes the proceedings of the 24th EPIA Conference on Progress in Artificial Intelligence, EPIA 2025, held in Faro, Portugal, during October 1–3, 2025.

The 76 full papers included in these proceedings were carefully reviewed and selected from 158 submissions. They were organized in topical sections as follows:

Part I: Artificial Intelligence in Medicine (AIM); AI for Architecture, Engineering and Conservation (AI4AEC); Knowledge Discovery and Business Intelligence (KDBI); Generative AI: Foundations and Applications (GenAI); Artificial Intelligence: Theory, Methods, and Applications (AITMA); Ethics and Responsibility in AI (ERAI).

Part II: Artificial Intelligence for Industry and Societies (AI4IS); Artificial Intelligence and Law (AIL); Artificial Intelligence and IoT in Agriculture (AIoTA); Artificial Intelligence in Transportation Systems (AITS); Natural Language Processing, Text Mining and Applications (NLP-TeMA); Ambient Intelligence and Affective Environments (AmIA); AI and Creativity (AIC); Artificial Intelligence in Power and Energy Systems (AIPES); Fuzzy Data Analysis and Applications (FDA).

Valente de Oliveira / Leite / Rodrigues Progress in Artificial Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Artificial Intelligence in Medicine (AIM).

.- AI-Driven Mobile Solution for Early Detection and Management of
Diabetic Foot Ulcers.

.- Deep neural networks to the detection of lumbar hernias: methodology
and preliminary results .

.- Knowledge-aware Clinical Narrative Extraction using Ontologies and
Knowledge Graphs.

.- Deep Learning-Based Microbial Colony Detection on Agar Plates.

.- Towards Intelligent Low-Code Systems: A systematic review.

.- Unveiling microRNA biomarkers for Breast Cancer Sub-typing using
Discriminative Models.

.- Smartphone Keyboard Typing for Rheumatic Disease Identification: A
Machine Learning Approach.

.- Dual Watermarking with Deep Learning for Enhancing Security of
Medical Images.

.- AI for Architecture, Engineering and Conservation (AI4AEC).

.- AI-driven adaptive photogrammetry for Built Heritage information
modelling.

.- From synthetic data to deep learning enhancements in muon
tomography for cultural heritage.

.- Crack Detection in Pavement Imagery: Evaluating U-Net Variants.

.- Coral and Fish Segmentation Enhanced by Image Restoration and
Assisted Labeling via a Foundation Model.

.- Multimodal Pipeline for Underwater Artifact Detection and 3D
Reconstruction with VLM and Gaussian Splatting.

.- From Facades to 3D Models: Automating Building Reconstruction with
Deep Learning and Texture Analysis.

.- Challenging Fortification Attribution Through AI-Assisted Geometric
Analysis.

.- Experimental LINCS Dam for Low-Cost Monitoring & Synthetic Data.

.- Knowledge Discovery and Business Intelligence (KDBI).

.- Online Data Augmentation for Forecasting with Deep Learning.

.- Time Series Modeling for Smart Energy Consumption in Industry 4.0.

.- Towards Smarter Property Recommendations in Complex Housing Market.

.- Feature-tokeniser transformer autoencoders for interpretable tabular
anomaly detection.

.- Benchmarking Time Series Feature Extraction for Algorithm Selection.

.- Managing Missing Data and Predictions in Short Time Series.

.- Learning Coastal Upwelling Patterns from Wind Velocity via
Interpretable Tree Models.

.- Generative AI: Foundations and Applications (GenAI).

.- SynDocDis: A Metadata-Driven Framework for Generating Synthetic
Physician Discussions Using Large Language Models.

.- Large Language Model Framework for Log Sequence Anomaly Detection.

.- LLM–Based Framework for Synthetic Data Generation in Portuguese
Clinical NER.

.- RAG-EVO: Increasing the Reliability and Autonomy of LLMs via
Iterative Recovery.

.- Generating Synthetic Medical Dialogues in European Portuguese:
Preliminary Results with GPT models.

.- Artificial Intelligence: Theory, Methods, and Applications (AITMA).

.- Convolutional Spiking Neural Networks with Molecular Fingerprints
for Drug Discovery.

.- Enhancing privacy: using blurred images with MobileNet SSD.

.- From Homeostatic Principles to Discrete Emotions in an Agent
Architecture - the HOmeostatic Regulation Architecture (HORA).

.- Multi-Objective Reinforcement Learning Algorithm for Irregular
Spatial Clusters Detection.

.- Exploring the Early Universe with Deep Learning.

.- Improved Complex-Valued Kolmogorov–Arnold Networks with
Theoretical Support.

.- From Execution to Representation: Capturing Metaheuristic Behaviour
via Graph-Derived Meta-Features.

.- A New Proposal of Layer Insertion in Stacked Autoencoder Neural
Networks.

.- Ethics and Responsibility in AI (ERAI).

.- Evaluating Coreset Selection with Coverage and Density: A Data
Quality Perspective.

.- Invisible Citizens, Visible Futures: Rethinking Inclusivity in Urban
Digital Twins.

.- Subgroup Discovery Using Model Uncertainty: A Feasibility Study.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.