E-Book, Englisch, 332 Seiten, eBook
Reihe: Topics in Mining, Metallurgy and Materials Engineering
Verdeja González / Fernández-González Physical Metallurgy and Heat Treatment of Steel
1. Auflage 2023
ISBN: 978-3-031-05702-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 332 Seiten, eBook
Reihe: Topics in Mining, Metallurgy and Materials Engineering
ISBN: 978-3-031-05702-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1. Solid-state transformations in the iron carbon system.1.1. Introduction.1.2. Crystalline structures of the iron.1.3. Solid solutions in the iron.1.3.1. Substitutional solid solutions.1.3.2. Interstitial solid solutions.1.3.2.1. Austenite.1.3.2.2. Ferrite.1.3.3. Hardness.1.3.3.1. Brinell hardness.1.3.3.2. Vickers hardness.1.3.3.3. Rockwell hardness.1.3.4. Tensile test.1.3.5. Toughness.1.4. Alphagenous and gammagenous character of the elements solubilized in the iron.1.5. The metastable Fe-C equilibrium diagram.1.5.1. 2.11% C steels.1.5.2. Transformations by equilibrium cooling of hypoeutectoid steels (<0.77% C).1.6. Influence of alloying elements in the Fe-C metastable diagram.1.7. Non-equilibrium transformations by isothermal cooling of the austenite.1.7.1. Metallography and kinetics of the pearlitic transformations.1.7.2. Bainitic transformations.1.7.2.1. Upper bainite.1.7.2.2. Lower bainite.1.7.3. TTT curves (Transformation-Temperature-Time curves).1.7.3.1. Intrinsic factors.1.7.3.2. Extrinsic factors.1.8. Transformation of the austenite into martensite.1.8.1. Crystalline structure and hardness of the martensite.1.8.2 Ms temperature.1.8.3. Thermal difference (?? – T) and residual austenite.1.8.4. Stabilization of the austenite by interruption in the cooling at T1.9. Complementary considerations about the ferritic-pearlitic transformations.1.9.1. Ferritic-pearlitic transformations of the austenite by continuous cooling.1.9.2. Ferritic-pearlitic transformations in low alloy steels.1.10. Designation and normalization of steels.1.10.1. Different methods to designate steels.1.10.1.1. Due to the chemical composition.1.10.1.2. Other designations.1.10.2. International standards for steels.1.11. References.2. Heat treatment of steels.2.1. Introduction.2.2. Austenitization.2.2.1. Heating to austenitize.2.2.1.1. Overheating and burning.2.2.1.2. Dimensional variations during the heating.2.2.2. Cooling from the austenitic state.2.2.2.1. Heat-transfer factor of the coolant agent.2.2.2.2. Size factor.2.3. Annealing to soft the steel.2.3.1. Full annealing.2.3.2. Intercritical annealing.2.3.3. Isothermal annealing.2.3.4. Subcritical annealing.2.4. Normalizing.2.5. Quenching.2.5.1. Hardenability.2.5.1.1. Jominy’s curves.2.5.1.2. Real and ideal critical diameters.2.5.2. Susceptibility to cracking due to quenching.2.5.3. Surface quenching.2.6. Tempering.2.6.1. General questions.2.6.1.1. Changes in the martensite during the heating.2.6.1.2. Evolution of the bainite and pearlite.2.6.1.3. Colors of the tempering.2.6.2. Stages of the martensite tempering.2.6.2.1. Transformation of the tetragonal martensite.2.6.2.2. Transformation of the residual austenite.2.6.2.3. Brittleness during the tempering.2.6.2.4. Recovery-recrystallization of the ferrite and spheroidiza-tion of the cementite.2.6.2.5. Secondary hardening.2.6.3. T1 temperature and time t in the tempering.2.6.3.1. Hardness after 1 hour of tempering at temperature T1.2.6.3.2. Equivalence temperature-time in the tempering.2.6.3.3. Potential hardness and softening coefficient.2.6.4. Multiple tempering treatments.2.7. Isothermal treatments.2.7.1. Patenting.2.7.2. Austempering.2.7.3. Martempering.2.7.4. Sub-zero treatments.2.8. Surface thermochemical treatments.2.9. Hyperquenching and aging.2.10. References.3. Thermomechanical treatments of steels.3.1. Recrystallization.3.2. Hot deformation.3.3. Improvements by hot forming of the solidification structures.3.3.1. Forge fibering and crystalline texture. Anisotropy of properties.3.3.1.1. Anisotropy and embrittlement by hydrogen.3.4. Thermomechanical treatments of the austenite before their allotropic transformation.3.4.1. Banded structure.3.4.1.1. Origin of the banded structure.3.4.1.2. Factors to remove or mask the banded structure.3.4.2. Controlled rolling.3.4.3. LT ausforming.3.5. Thermomechanical treatments of the austenite during its allotropic trans-formation.3.5.1. Isoforming.3.5.2. TRIP effect.3.6. Thermomechanical treatments after the transformation of the austenite.3.6.1. Pearlite forming.3.6.2. Martensite forming.3.7. References.4. Controlled atmospheres for heat treatments in furnaces.4.1. Introduction4.2. Formation and dissociation of metallic oxides. Ellingham’s diagram.4.3. Reduction of oxides with gases.4.3.1. Reduction of an oxide MxOy in presence of a CO-CO2 gaseous mix-ture.4.3.2. Reduction of an oxide MxOy with H2.4.3.3. Reductant or oxidizing aptitude of CO-CO2-H2-H2Ovapor gases mix-ture in equilibrium.4.4. Case-hardening and decarburizing of steels4.4.1. Boudouard equilibrium4.4.2. Decarburizing-case hardening in a CO-CO2 binary atmosphere4.4.3. Decarburizing-case hardening in a binary atmosphere of H2-CH4.4.4.4. Mixture of gases CO-CO2-H2-CH4-H2O in equilibrium.4.5. Industrial atmospheres. C-H-O-N system.4.5.1. Introduction4.5.2. Endothermic and exothermic atmospheres.4.5.3. Atmospheres obtained from NH3.4.5.3.1. Nickel as catalyzer of endothermic atmosphere.4.5.4. The future of the industrial atmospheres.4.6. Complementary considerations.4.7. References.




