Wang / Yan / Wu | Ubiquitous Security | E-Book | sack.de
E-Book

E-Book, Englisch, 444 Seiten

Reihe: Communications in Computer and Information Science

Wang / Yan / Wu Ubiquitous Security

4th International Conference, UbiSec 2024, Changsha, China, December 29–31, 2024, Revised Selected Papers
Erscheinungsjahr 2025
ISBN: 978-981-964836-8
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

4th International Conference, UbiSec 2024, Changsha, China, December 29–31, 2024, Revised Selected Papers

E-Book, Englisch, 444 Seiten

Reihe: Communications in Computer and Information Science

ISBN: 978-981-964836-8
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the proceedings of the Fourth International Conference on Ubiquitous Security, UbiSec 2024, held in Changsha, China, during December 29–31, 2024.

The 27 full papers and 5 short papers included in this book were carefully reviewed and selected from 73 submissions. These papers were organized in the followingsections: Cyberspace Security, and Cyberspace Privacy.

Wang / Yan / Wu Ubiquitous Security jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Cyberspace Security.
.- vCan We Use Smart Contracts to Improve Security of IoT.
.- A Data-free Backdoor Attack Approach in Self-Supervised Models.
.- Closed-loop Safe Correction for Reinforcement Learning Policy.
.- Fast and Efficient Layer-aware Container Vulnerability Patching in Edge Computing.
.- Enhancing Network Robustness through Feature Normalization and Improved Data Augmentation.
.- A Meta-Learning-Based Fault Waveform Detection Method for Distribution Lines Security.
.- Auditing the Auditor: Heuristics for Testing Password Auditing System Security.
.- Single sign-on Security: An Empirical Study of Sign in with Apple.
.- SEQDroid: A Deep Learning Approach for Android Malware Detection Based on API Sequences.
.- Ghaos: Phishing Detection on Ethereum Using Opcode Sequences with GraphSAGE-Attention.
.- SADT: Sandwich Attack Detection for Transactions on Decentralized Exchanges.
.- FCFuzz: Format Constrained Fuzzing for Network Protocol Implementations.
.- On the Effectiveness of Invisible Backdoor Attacks in Federated Learning.
.- FSFuzzer: A High-Performance Greybox Fuzzer for Stateful Network Protocol.
.- DQSroid: Dynamic Android Malware Detection Based on Quadruple Sequences and Data Augmentation.
.- Fast Encrypted Image Classification Based on Approximate Matrix Multiplication without Multiplying.
.- A Multi-Subset Privacy-Preserving Data Aggregation Scheme with Enhanced Statistical Analysis Capabilities for IoT.
.- Towards Tightly Secure Strongly Unforgeable Short Lattice Signatures.
.- Improving Transferability of Adversarial Examples by SVD Transformation.
.- Pedestrian Detection Approach with Multi-strategy Image Recognition Improvement Mechanism for Safe Truck Driving.

.- Cyberspace Privacy.
.- Integrating Resource Difficulty and Student Ability for Multidimensional Features-based Knowledge Tracing.
.- Enhancing Personalized Bundle Recommendation with Serendipity.
.- Enhanced K-means Clustering Algorithm Integrating Outlier Detection and Density Peaks.
.- Marriage Matching for Bipartite Graphs under Condensed Local Differential Privacy.
.- Optimizing Task Allocation with Privacy-Preserving Using Fuzzy Inference.
.- Privacy-preserving Cluster Similarity Model for Multi-user and Multi-data.
.- Blockchain-Based Secure Spectrum Sensing and Sharing Mechanism.
.- Short Papers.
.- TNSSL: TrojanNet Attack in Self-Supervised Learning.
.- A New Generation Wireless Biometric System with Deep Feature Fusion in IoT.
.- Enhancing Data Security and Efficiency in Digital Economy: A Blockchain-Based Data Trading System.
.- FT-SPC: A Fine-tuning Approach for Backdoor Defense via Adversarial Sample Selection.
.- A Blockchain-based Selective Disclosure Authentication System: A Self-Sovereign Credential Scheme Combining Decentralized Identity and Zero-Knowledge Proofs.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.