Whang / Pope / Liu | High Temperature Aluminides and Intermetallics | E-Book | www.sack.de
E-Book

E-Book, Englisch, 759 Seiten, Web PDF

Whang / Pope / Liu High Temperature Aluminides and Intermetallics

Proceedings of the Second International ASM Conference on High Temperature Aluminides and Intermetallics, September 16-19, 1991, San Diego, CA, USA
1. Auflage 2013
ISBN: 978-1-4832-9257-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the Second International ASM Conference on High Temperature Aluminides and Intermetallics, September 16-19, 1991, San Diego, CA, USA

E-Book, Englisch, 759 Seiten, Web PDF

ISBN: 978-1-4832-9257-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume of proceedings is concerned with an increasingly important area, that of intermetallics and high temperature aluminides, which has recently been attracting a great deal of attention. Nearly 150 papers presented at the meeting held in San Diego in September 1991 are reproduced here. They cover a wide range of related topics such as the bonding characteristic and alloying behaviour of TiA1 intermetallic compounds and the cleavage fracture of ordered intermetallic alloys. All the papers have been reviewed according to the standards set by Materials Science and Engineering. This book will be of interest to metallurgists and materials scientists working with composites who are interested in the latest developments in this fast-moving field.

Whang / Pope / Liu High Temperature Aluminides and Intermetallics jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;High Temperature Aluminides and Intermetallics;4
3;Copyright Page;5
4;Table of Contents;8
5;Preface;6
6;PART 1: ALLOY STABILITY;14
6.1;Chapter 1. Afirst-principles study of phase stability in N i - Al and Ni - Ti alloys;14
6.1.1;1. Introduction;14
6.1.2;2. Results and discussion;15
6.1.3;3. Conclusion;19
6.1.4;Acknowledgments;20
6.1.5;References;20
6.2;Chapter 2. Thermodynamic calculation of the ternary Ti-Al-Nb system;22
6.2.1;1. Introduction;22
6.2.2;2. History of calculations of the Ti-Al-Nb system;22
6.2.3;3. Available experimental data;23
6.2.4;4. Analytical description of the phases;24
6.2.5;5. Results and discussion;27
6.2.6;6. Conclusion;30
6.2.7;Acknowledgments;30
6.2.8;References;30
6.3;Chapter 3. Planar defect energies by the embedded atom method and dissociated superdislocation configurations in the Ll0-type TiAl compound;31
6.3.1;1. Introduction;31
6.3.2;2. Model;31
6.3.3;3. Dissociated superdislocation configurations and their energies;33
6.3.4;4. Results;35
6.3.5;6. Conclusions;38
6.3.6;References;38
6.4;Chapter 4. Design of Al3(Ti, V,Zr) systems through phase stability calculations;39
6.4.1;1. Introduction;39
6.4.2;2. Experimental details;39
6.4.3;3. Results and discussion;40
6.4.4;Acknowledgments;42
6.4.5;References;42
6.5;Chapter 5.The phase transformations in alloys based on titanium aluminides Ti3Al-V and TiAl-V;44
6.5.1;1. Introduction;44
6.5.2;2. Experimental details;44
6.5.3;3. Results;45
6.5.4;4. Discussion;48
6.5.5;Acknowledgments;48
6.5.6;References;49
6.6;Chapter 6.Effect of vanadium on elevated temperature phase relations in titanium aluminides containing 44 at.% Al;50
6.6.1;1. Introduction;50
6.6.2;2. Experimental details;50
6.6.3;3. Results;51
6.6.4;4. Discussion;52
6.6.5;5. Conclusions;53
6.6.6;Acknowledgments;53
6.6.7;References;53
7;PART 2: PHASE TRANSFORMATIONS;54
7.1;Chapter 7.Intermetallic Ti-Al-Nb alloys based on strengthening of the orthorhombic phase by ù-type phases;54
7.1.1;1. Introduction;54
7.1.2;2. Experimental details;54
7.1.3;3. Displacive instabilities of the B2 structure;55
7.1.4;4. Microstructures after annealing at elevated temperatures;55
7.1.5;5. Microhardness;58
7.1.6;6. Conclusions;60
7.1.7;Acknowledgments;60
7.1.8;References;60
7.2;Chapter 8.Influence of an increasing content of molybdenum on phase transformations of Ti-Al-Mo aluminides—relation with mechanical properties;61
7.2.1;1. Introduction;61
7.2.2;2. Experimental details;61
7.2.3;3. Results and discussion;62
7.2.4;4. Conclusion;65
7.2.5;Acknowledgments;65
7.2.6;References;65
7.3;Chapter 9.Study on phase stability in Ti-Al-X systems at high temperatures;67
7.3.1;1. Introduction;67
7.3.2;2. Experimental details;67
7.3.3;3. Results and discussion;68
7.3.4;4. Conclusion;72
7.3.5;Acknowledgments;72
7.3.6;References;72
7.4;Chapter 10. Thermal evidence for the structural instability in Ni3Al alloys;73
7.4.1;1. Introduction;73
7.4.2;2. Experimental details;74
7.4.3;3. Results and discussion;74
7.4.4;4. Conclusions;79
7.4.5;References;79
7.5;Chapter 11.Phase relations in TiAl2-based ternary titanium aluminides of iron or nickel;80
7.5.1;1. Introduction;80
7.5.2;2. Experimental details;81
7.5.3;3. Results;81
7.5.4;4. Discussion;85
7.5.5;5. Conclusions ;87
7.5.6;Acknowledgments;87
7.5.7;References;87
7.6;0Chapter 12. Phase stability in Be-Nb and Be-Nb-Zr intermetallics;89
7.6.1;1. Introduction;89
7.6.2;2. Experimental details;89
7.6.3;3. Results;90
7.6.4;4. Discussion;92
7.6.5;Acknowledgments;93
7.6.6;References;93
8;PART 3: DEFORMATION;94
8.1;Chapter 13.The effect of orientation and lamellar structure on the plastic behavior of TiAl crystals;94
8.1.1;1. Introduction;94
8.1.2;2. Experimental procedure;95
8.1.3;3. Results;95
8.1.4;4. Discussion;99
8.1.5;5. Conclusions;100
8.1.6;Acknowledgments;100
8.1.7;References;101
8.2;Chapter 14. An atomistic study of dislocations and their mobility in a model D02 2 alloy;102
8.2.1;1. Introduction;102
8.2.2;2. Interatomic forces and equilibrium properties of the structure;103
8.2.3;3. Planar faults on low index planes;104
8.2.4;4. Dislocation core structures;104
8.2.5;5. Effect of applied shear stresses;105
8.2.6;6. Discussion;106
8.2.7;Acknowledgments;107
8.2.8;References;107
8.3;Chapter 15.An atomistic study of the dislocation core structures and mechanical behavior of a model D019 alloy;108
8.3.1;1. Introduction;108
8.3.2;2. Model N-body potentials;109
8.3.3;3. Stability of the planar faults: . surfaces;110
8.3.4;4. Core structures of 1/3[I2I0] screw superpartials;111
8.3.5;5. Discussion;113
8.3.6;Acknowledgments;114
8.3.7;References;114
8.4;Chapter 16. Atomistic modeling of dislocations in Be12X compounds;116
8.4.1;1. Introduction;116
8.4.2;2. Computational procedure;117
8.4.3;3. Results and discussion;118
8.4.4;4. Summary;120
8.4.5;Acknowledgments;120
8.4.6;References;120
8.5;Chapter 17.Improvement in ductility of Ni3Al by . former doping;121
8.5.1;1. Introduction;121
8.5.2;2. Experimental details;122
8.5.3;3. Results;122
8.5.4;4. Discussion;124
8.5.5;5. Conclusions;125
8.5.6;Acknowledgments;126
8.5.7;References;126
8.6;Chapter 18. Mechanical properties of advanced nickel aluminides;127
8.6.1;1. Introduction;127
8.6.2;2. Experimental details;127
8.6.3;3. Results;128
8.6.4;4. Discussion;130
8.6.5;5. Conclusions;132
8.6.6;Acknowledgments;132
8.6.7;References;132
8.7;Chapter 19. Behaviour of boron in poly- and monocrystalline Ni3 Al and its effect on strength at room and high temperature;133
8.7.1;1. Introduction;133
8.7.2;2. Experimental details;133
8.7.3;3. Results;134
8.7.4;4. Discussions;136
8.7.5;5. Conclusions;137
8.7.6;Acknowledgments;137
8.7.7;References;138
8.8;Chapter 20. Bend ductility, creep strength and physical properties of extruded chromium-modified Al3Ti;139
8.8.1;1. Introduction;139
8.8.2;2. Experimental details;139
8.8.3;3. Results and discussion;140
8.8.4;4. Summary and conclusions;143
8.8.5;Acknowledgments;143
8.8.6;References;143
8.9;Chapter 21. Structure/property observations for Al-Ti-Cr alloys near the cubic (Al,Cr)3Ti phase;145
8.9.1;1. Introduction;145
8.9.2;2. Experimental details;145
8.9.3;3. Results and discussion;146
8.9.4;4. Conclusions;150
8.9.5;Acknowledgments;150
8.9.6;References;150
8.10;Chapter 22. The strength and ductility of Ni3Ge with and without boron;151
8.10.1;1. Introduction;151
8.10.2;2. Experimental details;151
8.10.3;3. Results;152
8.10.4;4. Discussion;156
8.10.5;5. Summary and conclusions;157
8.10.6;Acknowledgments;158
8.10.7;References;158
8.11;Chapter 23. Effects of test environment and grain size on the tensile properties of Ll2-ordered (Co,Fe)3V alloys;159
8.11.1;1. Introduction;159
8.11.2;2. Experimental details;159
8.11.3;3. Results;160
8.11.4;4. Discussion;162
8.11.5;5. Summary;164
8.11.6;Acknowledgments;164
8.11.7;References;164
8.12;Chapter 24. Room temperature deformation of CoSi2 single crystals;166
8.12.1;1. Introduction;166
8.12.2;2. Experimental details;167
8.12.3;3. Results;167
8.12.4;4. Discussion;171
8.12.5;5. Conclusions;172
8.12.6;Acknowledgments;172
8.12.7;References;172
8.13;Chapter 25. Deformation mechanisms and ductility of mechanically alloyed NiAl;173
8.13.1;1. Introduction;173
8.13.2;2. Experimental details;173
8.13.3;3. Results;174
8.13.4;4. Discussion;175
8.13.5;5. Conclusions;177
8.13.6;Acknowledgments;177
8.13.7;References;178
8.14;Chapter 26. Strength properties and enhanced plasticity of intermetallic Ti-Al-(CrSi) alloys;179
8.14.1;1. Introduction;179
8.14.2;2. Experimental procedure;179
8.14.3;3. Results and discussion;180
8.14.4;4. Conclusions;185
8.14.5;References;185
9;PART 4: POINT DEFECTS AND DISLOCATIONS;186
9.1;Chapter 27. Studies of vacancies and dislocations in TiAl by positron annihilation;186
9.1.1;1. Introduction;186
9.1.2;2. Experimental details;186
9.1.3;3. Results;187
9.1.4;4. Discussion;191
9.1.5;5. Conclusions;193
9.1.6;Acknowledgments;193
9.1.7;References;193
9.2;Chapter 28. Dissociation of superdislocations in single crystal Ll0Ti-Al- compounds;195
9.2.1;1. Introduction;195
9.2.2;2. Experimental details;196
9.2.3;3. Results;196
9.2.4;4. Discussion;198
9.2.5;5. Conclusions;200
9.2.6;Acknowledgment;200
9.2.7;References;200
9.3;Chapter 29. The strain field and work-hardening from antiphase boundary tubes in ordered alloys;202
9.3.1;1. Introduction;202
9.3.2;2. Origin of the atomic relaxation around an APB tube;202
9.3.3;3. Contrast effects in the transmission electron microscope;203
9.3.4;4. Generation of APB tubes in the unlocking of Kear-Wilsdorf dislocations;204
9.3.5;5. Interaction between tubes and dislocations;204
9.3.6;6. Work-hardening from tubes;206
9.3.7;7. Conclusions;206
9.3.8;Acknowledgments;207
9.3.9;References;207
9.4;Chapter 30. Dislocation structures and mechanisms of strain hardening in cyclically deformed Ni3 Al + B single crystals;208
9.4.1;1. Introduction;208
9.4.2;2. Experimental details;208
9.4.3;3. Results;209
9.4.4;4. Discussion;212
9.4.5;5. Conclusions;213
9.4.6;Acknowledgments;214
9.4.7;References;214
9.5;Chapter 31. Microstructures of Nb-26Ti-48Al + (Nb, Ti)B;215
9.5.1;1. Introduction;215
9.5.2;2. Experimental details;215
9.5.3;3. Results and discussion;215
9.5.4;4. Summary;220
9.5.5;Acknowledgment;220
9.5.6;References;220
9.6;Chapter 32. A transmission electron microscopy study of dislocation structures in a directionally solidified Ni3Al-based alloy deformed at 850 °C;221
9.6.1;1. Introduction;221
9.6.2;2. Experimental details;221
9.6.3;3. Results;222
9.6.4;4. Discussion;223
9.6.5;5. Conclusions;223
9.6.6;References;224
10;PART 5:
MICROSTRUCTURE;225
10.1;Chapter 33. Mechanical behavior of ion-irradiated ordered intermetallic compounds;225
10.1.1;1. Introduction;225
10.1.2;2. Comparison of the mechanical properties of ordered and disordered alloys;226
10.1.3;3. Characteristics of ion bombardment;226
10.1.4;4. The miniaturized disk bend test (MDBT);228
10.1.5;5. Mechanical properties of ion-irradiated ordered intermetallics;229
10.1.6;6. Concluding remarks;237
10.1.7;Acknowledgments;238
10.1.8;References;238
10.2;Chapter 34. Three-phase (ß+ß+y') Ni-Al-Ti-(Cr, Fe) alloys for high temperature use;240
10.2.1;1. Introduction;240
10.2.2;2. Three-phase field;241
10.2.3;3. Alloy preparation and mechanical testing procedures;242
10.2.4;4. Microstructural features;242
10.2.5;5. Mechanical properties;244
10.2.6;6. Micrography of dislocations;245
10.2.7;7. Conclusions;247
10.2.8;8. Prognosis;248
10.2.9;Acknowledgments;248
10.2.10;References;249
10.3;Chapter 35. On charge density determinations in intermetallics by quantitative convergent beam electron diffraction;250
10.3.1;1. Introduction;250
10.3.2;2. The CBED technique;250
10.3.3;3. Experimental details;251
10.3.4;4. Results;251
10.3.5;5. Conclusions;252
10.3.6;Acknowledgments;252
10.3.7;References;252
10.4;Chapter 36. Primary dendrite arm spacings and tip radii in directionally solidified Ni3Al;253
10.4.1;1. Introduction;253
10.4.2;2. Experimental details;254
10.4.3;3. Results and discussion;255
10.4.4;4. Conclusions;258
10.4.5;Acknowledgments;259
10.4.6;References;259
10.5;Chapter 37. Microstructure of precipitation strengthened Ni3Al and TiAl;260
10.5.1;1. Introduction;260
10.5.2;2. Experimental details;260
10.5.3;3. Results and discussion;261
10.5.4;4. Summary;264
10.5.5;Acknowledgments;264
10.5.6;References;264
10.6;Chapter 38. Effect of boron in two-phase (NiAl + Ni3Al) alloy;266
10.6.1;1. Introduction;266
10.6.2;2. Experimental details;266
10.6.3;3. Results and discussion;266
10.6.4;4. Conclusions;270
10.6.5;References;270
10.7;Chapter 39. The effect of annealing on Ni-Al-Fe B2 compounds;271
10.7.1;1. Introduction;271
10.7.2;2. Experimental details;271
10.7.3;3. Results and discussion;272
10.7.4;4. Conclusions;276
10.7.5;References;276
10.8;Chapter 40. Microstructures and mechanical behaviors of Ni-Al-Fe intermetallic compounds;277
10.8.1;1. Introduction;277
10.8.2;2. Experimental details;277
10.8.3;3. Results and discussion;278
10.8.4;4. Conclusions;280
10.8.5;References;281
10.9;Chapter 41. Microstructural evolution and tensile properties of titanium-rich TiAl alloy;282
10.9.1;1. Introduction;282
10.9.2;2. Experimental details;282
10.9.3;3. Results and discussion;283
10.9.4;4. Summary;288
10.9.5;Acknowledgments;288
10.9.6;References;288
10.10;Chapter 42. Microstructural evaluation of as-solidified and heat-treated .-TiAl based powders;290
10.10.1;1. Introduction;290
10.10.2;2. Experimental details;290
10.10.3;3. Results and discussion;291
10.10.4;4. Conclusions;294
10.10.5;References;295
10.11;Chapter 43. Homogeneity and mechanical properties of TiAl;296
10.11.1;1. Introduction;296
10.11.2;2. Experimental procedures;296
10.11.3;3. Results and discussion;297
10.11.4;4. Conclusions;300
10.11.5;References;300
10.12;Chapter 44. Microstructures and properties of high melting point intermetallic Ti5Si3 and TiSi2 compounds;301
10.12.1;1. Introduction;301
10.12.2;2. Experimental details;302
10.12.3;3. Results;302
10.12.4;4. Conclusions;306
10.12.5;Acknowledgment;307
10.12.6;References;307
10.13;Chapter 45. Microstructure and phase evolution in rapidly-solidified Ti-24Al-llNb;308
10.13.1;1. Introduction;308
10.13.2;2. Experimental details;308
10.13.3;3. Results and discussion;310
10.13.4;4. Conclusions;314
10.13.5;Acknowledgments;316
10.13.6;References;316
10.14;Chapter 46. Effect of heat treatment on microstructure and microhardness of spot welds inTi-26Al-llNb;317
10.14.1;1. Introduction;317
10.14.2;2. Experimental details;317
10.14.3;3. Results and discussion;318
10.14.4;4. Conclusions;321
10.14.5;References;322
10.15;Chapter 47. The microstructure and mechanical properties of the intermetallic compound Super Alpha 2;323
10.15.1;1. Introduction;323
10.15.2;2. Experimental details;323
10.15.3;3. Results;324
10.15.4;4. Discussion;328
10.15.5;5. Conclusions;329
10.15.6;Acknowledgment;329
10.15.7;References;329
10.16;Chapter 48. Microstructure and tensile properties of a Ti3Al-Nb-Mo-V alloy;330
10.16.1;1. Introduction;330
10.16.2;2. Experimental details;330
10.16.3;3. Results;331
10.16.4;4. Discussion;333
10.16.5;5. Conclusions;334
10.16.6;References;334
10.17;Chapter 49. Microstructural characterization of precipitates formed during high temperature testing and processing of iron-aluminide alloys;335
10.17.1;1. Introduction;335
10.17.2;2. Experimental details;335
10.17.3;3. Results;336
10.17.4;4. Discussion;341
10.17.5;5. Conclusions;345
10.17.6;Acknowledgments;346
10.17.7;References;346
10.18;Chapter 50. Abnormal grain growth in textured FeAl intermetallics;348
10.18.1;1. Introduction;348
10.18.2;2. Experimental details;348
10.18.3;3. Results;349
10.18.4;4. Discussion;351
10.18.5;Acknowledgments;352
10.18.6;References;352
10.19;Chapter 51. Age hardening behavior of a hypo-stoichiometric Fe3 Al intermetallic compound;354
10.19.1;1. Introduction;354
10.19.2;2. Experimental details;355
10.19.3;3. Results;355
10.19.4;4. Discussion;359
10.19.5;5. Conclusions;360
10.19.6;References;361
10.20;Chapter 52. Microstructure of Nb2Al-NbAl3 eutectic alloys produced by unidirectional solidification;362
10.20.1;1. Introduction;362
10.20.2;2. Experimental details;362
10.20.3;3. Results and discussion;365
10.20.4;4. Summary;367
10.20.5;References;368
11;PART 6:
HIGH TEMPERATURE DEFORMATION AND MECHANICAL PROPERTIES;369
11.1;Chapter 53. New concepts of analyzing plastic deformation of TiAl and Ni3AI intermetallic compounds;369
11.1.1;1. Introduction;369
11.1.2;2. Plastic deformation equation for the simplest dislocation ensemble;369
11.1.3;3. Plastic deformation with several types of glissile and sessile dislocations;371
11.1.4;4. Application of the phenomenological scheme to analysis of the plastic deformation of intermetallic compounds;373
11.1.5;References;375
11.2;Chapter 54. Mechanical properties of boron-doped directionally-solidified Ni3Al containing carbon, magnesium, calcium and rare earth elements;377
11.2.1;1. Introduction;377
11.2.2;2. Experimental details;377
11.2.3;3. Results;378
11.2.4;4. Discussion;380
11.2.5;5. Conclusions;381
11.2.6;Acknowledgment;382
11.2.7;References;382
11.3;Chapter 55. The role of hot-working on the microstructure and mechanical properties of the Ll2-type manganese-modified Al3Ti alloy;383
11.3.1;1. Introduction;383
11.3.2;2. Experimental details;383
11.3.3;3. Results and discussion;384
11.3.4;4. Conclusions;388
11.3.5;Acknowledgment;389
11.3.6;References;389
11.4;Chapter 56. Improvement of hot workability of Ni3Al-Cr-Zr-B ordered alloy;390
11.4.1;1. Introduction;390
11.4.2;2. Experimental details;390
11.4.3;3. Results;390
11.4.4;4. Discussion;391
11.4.5;5. Conclusions;394
11.4.6;References;394
11.5;Chapter 57. Elevated temperature behavior of Fe3Al with chromium additions;395
11.5.1;1. Introduction;395
11.5.2;2. Experimental details;395
11.5.3;3. Results;396
11.5.4;4. Conclusions;399
11.5.5;Acknowledgments;399
11.5.6;References;399
11.6;Chapter 58. The negative temperature dependence of yield strength in the Ll2 compound Fe3Ge;400
11.6.1;1. Introduction;400
11.6.2;2. Experimental details;400
11.6.3;3. Results;400
11.6.4;4. Discussion;402
11.6.5;5. Conclusions;403
11.6.6;Acknowledgments;403
11.6.7;References;403
11.7;Chapter 59. Effect of copper alloying on the deformation behavior of B2 NiAl intermetallic compounds;405
11.7.1;1. Introduction;405
11.7.2;2. Experimental details;405
11.7.3;3. Results;406
11.7.4;4. Discussion;407
11.7.5;5. Conclusions;409
11.7.6;Acknowledgments;410
11.7.7;References;410
11.8;Chapter 60. High temperature strength of niobium aluminide intermetallics;411
11.8.1;1. Introduction;411
11.8.2;2. Experimental details;412
11.8.3;3. Results and discussion;412
11.8.4;4. Conclusions;413
11.8.5;Acknowledgments;413
11.8.6;References;414
11.9;Chapter 61. Evaluation of refractory intermetallics with Al 5 structure for high temperature structural applications;415
11.9.1;1. Introduction;415
11.9.2;2. Experimental details;417
11.9.3;3. Results;418
11.9.4;4. Discussion of results;421
11.9.5;5. Summary;422
11.9.6;Acknowledgments;422
11.9.7;References;422
11.10;Chapter 62. High temperature evaluation of topologically close packed intermetallics;423
11.10.1;1. Introduction;423
11.10.2;2. Experimental details;424
11.10.3;3. Results;424
11.10.4;4. Discussion;427
11.10.5;5. Conclusions;428
11.10.6;Acknowledgments;428
11.10.7;References;428
11.11;Chapter 63. Elevated temperature mechanical properties of Be12Nb;429
11.11.1;1. Introduction;429
11.11.2;2. Experimental details;430
11.11.3;3. Results;430
11.11.4;4. Discussion;432
11.11.5;5. Conclusions;433
11.11.6;Acknowledgments;434
11.11.7;References;434
11.12;Chapter 64. A study on long-term stability of Ti3 Al-Nb-V-Mo alloy;435
11.12.1;1. Introduction;435
11.12.2;2. Experimental details;435
11.12.3;3. Results;436
11.12.4;4. Discussion;437
11.12.5;5. Conclusions;439
11.12.6;References;439
11.13;Chapter 65. Creep in titanium aluminides;440
11.13.1;1. Introduction;440
11.13.2;2. Creep behavior of .-TiAI;441
11.13.3;3. Effects of some materials factors;442
11.13.4;4. Discussion and remarks;444
11.13.5;Acknowledgments;445
11.13.6;References;445
11.14;Chapter 66. Different origins of grain size and composition effects on creep in TiAl;446
11.14.1;1. Introduction;446
11.14.2;2. Experimental details;446
11.14.3;3. Results and discussion;447
11.14.4;4. Conclusions;450
11.14.5;Acknowledgments;450
11.14.6;References;450
11.15;0Chapter 67. The effect of reinforcement size on the creep strength of intermetallic matrix composites;451
11.15.1;1. Introduction;451
11.15.2;2. The model;452
11.15.3;3. Compatibility of deformation at the location of the reinforcement;454
11.15.4;4. Discussion;454
11.15.5;5. Summary;455
11.15.6;Acknowledgments;456
11.15.7;References;456
11.16;Chapter 68. Creep behaviour of dual-phase intermetallics based on (Ti,Nb)3(Al,Si) and(Ti,Nb)5(Si,Al);457
11.16.1;1. Introduction;457
11.16.2;2. Experimental details;458
11.16.3;3. Results;458
11.16.4;4. Discussion;462
11.16.5;5. Conclusions;463
11.16.6;Acknowledgments;463
11.16.7;References;463
11.17;Chapter 69. Alloy modification of .-base titanium aluminide for improved oxidation resistance, creep strength and fracture toughness;464
11.17.1;1. Introduction;464
11.17.2;2. Experimental procedures;464
11.17.3;3. Results and discussion;465
11.17.4;4. Conclusions;469
11.17.5;References;469
11.18;Chapter 70. Superplastic behavior of regular a2 and super a2 titanium aluminides;470
11.18.1;1. Introduction;470
11.18.2;2. Experimental details;470
11.18.3;3. Results and discussion;471
11.18.4;4. Conclusion;476
11.18.5;Acknowledgments;477
11.18.6;References;477
11.19;Chapter 71. Superplasticity in a nickel silicide alloy—microstructural and mechanical correlations;478
11.19.1;1. Introduction;478
11.19.2;2. Experimental details;478
11.19.3;3. Results and discussion;479
11.19.4;4. Conclusions;481
11.19.5;Acknowledgments;481
11.19.6;References;482
12;PART 7:
FATIGUE AND FRACTURE;483
12.1;Chapter 72. Cleavage fracture of ordered intermetallic alloys;483
12.1.1;1. Introduction;483
12.1.2;2. Brittle vs. ductile behavior;483
12.1.3;3. Theoretical strength;484
12.1.4;4. Fracture toughness;486
12.1.5;5. Discussion;489
12.1.6;6. Summary;490
12.1.7;Acknowledgments;490
12.1.8;References;490
12.2;Chapter 73. Fatigue crack propagation resistance of ductile TiNb-reinforced .-TiAl intermetallic matrix composites;492
12.2.1;Abstract;492
12.2.2;1. Introduction;492
12.2.3;2. Experimental details;492
12.2.4;3. Results and discussion;494
12.2.5;4. Conclusions;497
12.2.6;Acknowledgments;498
12.2.7;References;498
12.3;Chapter 74. Elevated temperature crack growth resistance of TiAl under monotonie and cyclic loading;499
12.3.1;1. Introduction;499
12.3.2;2. Experimental details;499
12.3.3;3. Results;500
12.3.4;4. Discussion;503
12.3.5;5. Conclusions;504
12.3.6;Acknowledgments;504
12.3.7;References;505
12.4;Chapter 75. Frequency and hold time effects on crack growth of Ti-24A1-1 INb at high temperature;506
12.4.1;1. Introduction;506
12.4.2;2. Experimental details;506
12.4.3;3. Results and discussion;507
12.4.4;4. Fatigue-creep-environment model;509
12.4.5;5. Conclusions;510
12.4.6;Acknowledgments;510
12.4.7;References;510
12.5;Chapter 76. Microstructure and crack-shape effects on the growth behavior of small fatigue cracks in Ti-24A1-1 INb;512
12.5.1;1. Introduction;512
12.5.2;2. Experimental details;512
12.5.3;3. Results and discussion;513
12.5.4;4. Conclusions;517
12.5.5;Acknowledgments;519
12.5.6;References;519
12.6;Chapter 77. Sub-critical crack growth in a Ti3 Al-based aluminide at elevated temperatures;521
12.6.1;1. Introduction;521
12.6.2;2. Experimental details;521
12.6.3;3. Results;522
12.6.4;4. Predictions of static-cyclic interactions at 700 °C;523
12.6.5;5. Discussion;525
12.6.6;6. Conclusions;525
12.6.7;References;526
12.7;Chapter 78. Elevated temperature fatigue behavior of SCS-6/Ti-24Al-l INb;527
12.7.1;1. Introduction;527
12.7.2;2. Experimental details;527
12.7.3;3. Results;528
12.7.4;4. Life fraction model;530
12.7.5;5. Discussion;531
12.7.6;6. Conclusions;531
12.7.7;Acknowledgments;532
12.7.8;References;532
12.8;Chapter 79. The effect of casting temperature on the fatigue properties of cast nickel aluminide alloys;533
12.8.1;1. Introduction;533
12.8.2;2. Experimental details;533
12.8.3;3. Results;534
12.8.4;4. Discussion;536
12.8.5;5. Conclusions;537
12.8.6;Acknowledgments;537
12.8.7;References;537
12.9;Chapter 80. The effect of niobium additions on the fracture of Ni-19Si-based alloys;538
12.9.1;1. Introduction;538
12.9.2;2. Experimental details;538
12.9.3;3. Results and discussion;539
12.9.4;4. Conclusions;544
12.9.5;Acknowledgment;544
12.9.6;References;544
12.10;Chapter 81. Fatigue and fracture of a Ni2Cr ordered intermetallic alloy;545
12.10.1;1. Introduction;545
12.10.2;2. Experimental details;545
12.10.3;3. Results and discussion;546
12.10.4;4. Summary;549
12.10.5;Acknowledgments;550
12.10.6;References;550
13;PART 8:
OXIDATION AND ENVIRONMENTAL EMBRITTLEMENT;551
13.1;Chapter 82. Elevated-temperature environmental embrittlement and alloy design of LI2 ordered intermetallics;551
13.1.1;1. Introduction;551
13.1.2;2. Environmental embrittlement in Ll2 ordered intermetallics;551
13.1.3;3. Embrittling mechanisms;554
13.1.4;4. Alloy design;557
13.1.5;5. General discussion and remarks;558
13.1.6;6. Summarizing remarks;559
13.1.7;Acknowledgments;559
13.1.8;References;559
13.2;Chapter 83. The oxidation behavior of intermetallic compounds;561
13.2.1;1. Introduction;561
13.2.2;2. Effects of temperature;565
13.2.3;3. Effects of alloying elements;567
13.2.4;4. Effects of atmosphere composition;569
13.2.5;5. Interstitial embrittlement;570
13.2.6;6. Summary;571
13.2.7;References;572
13.3;Chapter 84. Diffusional transport and predicting oxidative failure during cyclic oxidation of ß-NiAl alloys;574
13.3.1;1. Introduction;574
13.3.2;2. Experimental details and results;575
13.3.3;3. Life prediction methodology and results;577
13.3.4;4. Discussion;578
13.3.5;5. Summary and conclusions;579
13.3.6;References;579
13.4;Chapter 85. Oxidation behavior of a NiAl/TiB2 intermetallic composite;580
13.4.1;1. Introduction;580
13.4.2;2. Experimental details;580
13.4.3;3. Results;581
13.4.4;4. Discussion;584
13.4.5;5. Conclusions;584
13.4.6;Acknowledgments;585
13.4.7;References;585
13.5;Chapter 86. Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments;586
13.5.1;1. Introduction;586
13.5.2;2. Experimental details;586
13.5.3;3. Results;587
13.5.4;4. Discussion;588
13.5.5;5. Summary;590
13.5.6;Acknowledgment;590
13.5.7;References;590
13.6;Chapter 87. Effects of hydrogen in titanium aluminide alloys;591
13.6.1;1. Introduction;591
13.6.2;2. Hydrides;591
13.6.3;3. Mechanical properties;593
13.6.4;Acknowledgments;595
13.6.5;References;595
13.7;Chapter 88. Oxide properties of a .-TiAl: a surface science study;597
13.7.1;1. Introduction;597
13.7.2;2. Experimental details;598
13.7.3;3. Results;598
13.7.4;4. Discussion;601
13.7.5;Acknowledgments;603
13.7.6;References;603
13.8;Chapter 89. Effect of silicon and niobium on oxidation resistance of TiAl intermetallics;604
13.8.1;1. Introduction;604
13.8.2;2. Experimental procedure;604
13.8.3;3. Results;605
13.8.4;4. Discussion;607
13.8.5;5. Conclusions;609
13.8.6;References;609
13.9;Chapter 90. Oxidation and mechanical behavior of intermetallic alloys in the Ti-Nb-Al ternary system;610
13.9.1;1. Introduction;610
13.9.2;2. Experimental procedure;610
13.9.3;3. Results;610
13.9.4;4. Discussion;612
13.9.5;5. Conclusions;613
13.9.6;Acknowledgments;614
13.9.7;References;614
13.10;Chapter 91. Cyclic oxidation resistance of an intermetallic compound TiAl;615
13.10.1;1. Introduction;615
13.10.2;2. Experimental details;615
13.10.3;3. Results;616
13.10.4;4. Discussion;616
13.10.5;5. Conclusions;620
13.10.6;References;620
13.11;Chapter 92. The initial oxidation of a2(Ti3Al) and .(TiAl) titanium aluminide alloys;621
13.11.1;1. Introduction;621
13.11.2;2. Experimental details;621
13.11.3;3. Results and discussion;622
13.11.4;4. Summary;625
13.11.5;Acknowledgments;625
13.11.6;References;625
13.12;Chapter 93. Evaluation of the environmentally assisted cracking of aluminide intermetallic compounds;626
13.12.1;1. Introduction;626
13.12.2;2. Experimental procedure;627
13.12.3;3. Results and discussion;627
13.12.4;4. Conclusions;630
13.12.5;Acknowledgments;631
13.12.6;References;631
14;PART 9:
COMPOSITES;632
14.1;Chapter 94 .Mechanical behavior of a fiber reinforced Ni3AI matrix composite;632
14.1.1;1. Introduction;632
14.1.2;2. Experimental details;632
14.1.3;3. Results;634
14.1.4;4. Discussion;637
14.1.5;5. Conclusions;639
14.1.6;Acknowledgments;640
14.1.7;References;640
14.2;Chapter 95. Micromodelling of crack growth in fibre reinforced composites;641
14.2.1;1. Introduction;641
14.2.2;2. Experimental details;642
14.2.3;3. Basis of the model;642
14.2.4;4. Results;643
14.2.5;5. Modelling of crack growth in fibre reinforced composites;643
14.2.6;6. Discussion;645
14.2.7;7. Conclusions;646
14.2.8;Acknowledgments;647
14.2.9;References;647
14.3;Chapter 96. The mechanical properties of an Al2O3/Ni3Al particulate-reinforced composite;648
14.3.1;1. Introduction;648
14.3.2;2. Experimental details;648
14.3.3;3. Results;649
14.3.4;4. Discussion;650
14.3.5;5. Conclusions;653
14.3.6;Acknowledgment;653
14.3.7;References;653
14.4;Chapter 97. Producing Ni3 Al matrix composite material by vacuum hot pressing and heat treatment of nickel-plated aluminum sheets with A1203 fiber;654
14.4.1;1. Introduction;654
14.4.2;2. Experimental details;654
14.4.3;3. Results;655
14.4.4;4. Discussion;657
14.4.5;5. Conclusions;658
14.4.6;Acknowledgments;658
14.4.7;References;658
14.5;Chapter 98. Microstructure and elevated temperature behavior of a spray-atomized and co-deposited Ni Al/SiC/TiB intermetallic matrix composite;659
14.5.1;1. Introduction;659
14.5.2;2. Experimental details;659
14.5.3;3. Results;661
14.5.4;4. Discussion;663
14.5.5;5. Conclusions;665
14.5.6;Acknowledgments;666
14.5.7;References;666
14.6;Chapter 99. Interfacial behavior in a Ni3Al/TiB2 intermetallic matrix composite;667
14.6.1;1. Introduction;667
14.6.2;2. Experimental details;668
14.6.3;3. Results;668
14.6.4;4. Discussion;671
14.6.5;5. Conclusions;673
14.6.6;Acknowledgments;673
14.6.7;References;673
14.7;Chapter 100. Interaction of tantalum with reinforcements in . TiAl;675
14.7.1;1. Introduction;675
14.7.2;2. Experimental details;675
14.7.3;3. Results;676
14.7.4;4. Discussion;678
14.7.5;5. Conclusions;680
14.7.6;Acknowledgments;680
14.7.7;References;680
14.8;Chapter 101. On the toughness and creep behavior of fiber reinforced MoSi2 intermetallics;681
14.8.1;1. Introduction;681
14.8.2;2. Experimental details;682
14.8.3;4. Concluding discussion;687
14.8.4;Acknowledgments;688
14.8.5;References;688
15;PART 10:
NOVEL PROCESSING;689
15.1;Chapter 102. Synthesis, processing and properties of nanophase aluminide;689
15.1.1;1. Introduction;689
15.1.2;Acknowledgments;691
15.2;Chapter 103. Nanocrystalline intermetallic compounds—structure and mechanical properties;692
15.2.1;1. Introduction;692
15.2.2;2. Experimental details;693
15.2.3;3. Results and discussion;693
15.2.4;Acknowledgment;695
15.2.5;References;695
15.3;Chapter 104. Mechanical alloying of FeAl with Y2O3;697
15.3.1;1. Introduction;697
15.3.2;2. Experimental details;698
15.3.3;3. Experimental results and discussion;698
15.3.4;4. Conclusions;702
15.3.5;Acknowledgments;702
15.3.6;References;702
15.4;Chapter 105. Synthesis of Al/Al3Ti two-phase alloys by mechanical alloying;704
15.4.1;1. Introduction;704
15.4.2;2. Experimental details;705
15.4.3;3. Results;706
15.4.4;4. Discussion;708
15.4.5;Acknowledgment;708
15.4.6;References;708
15.5;Chapter 106. Improvement of ductility of NiAl at room temperature and manufacturing of NiAl-TiB composites by melt spinning;709
15.5.1;1. Introduction;709
15.5.2;2. Experimental procedures;709
15.5.3;3. Results and discussion;709
15.5.4;4. Conclusions;712
15.5.5;Acknowledgments;712
15.5.6;References;712
15.6;Chapter 107. Combustion synthesis of intermetallic compounds using titanium, nickel and copper wires;713
15.6.1;1. Introduction;713
15.6.2;2. Experimental details;715
15.6.3;3. Conclusions;716
15.6.4;References;717
15.7;Chapter 108.Reaction processing of iron aluminides;719
15.7.1;1. Introduction;719
15.7.2;2. Experimental details;720
15.7.3;3. Results and discussion;721
15.7.4;4. Conclusions;723
15.7.5;Acknowledgments;724
15.7.6;References;724
15.8;Chapter 109. Processing of nickel aluminides and their industrial applications;725
15.8.1;1. Introduction;725
15.8.2;2. Alloy compositions;725
15.8.3;3. Review of processing status;725
15.8.4;4. Commercial production and processing of alloy IC-218LZr;726
15.8.5;5. Future plans;729
15.8.6;6. Microstructure of small heat processed commercially;729
15.8.7;7. Status of various applications;729
15.8.8;8. Summary and conclusions;732
15.8.9;Acknowledgments;734
15.8.10;References;734
15.9;Chapter 110. Development of castable TiAl alloy for turbine components;735
15.9.1;1. Introduction;735
15.9.2;2. Selection of alloying elements;735
15.9.3;3. Castability improvement;735
15.9.4;4. Microstructure and mechanical properties;736
15.9.5;5. Summary;737
15.9.6;References;738
15.10;Chapter 111. The effects of HIP processing on microstructure and phase relations in a2-base titanium aluminides;739
15.10.1;1. Introduction;739
15.10.2;2. Experimental details;740
15.10.3;3. Results;740
15.10.4;4. Cast and hot isostatic pressed material;742
15.10.5;5. Discussion;744
15.10.6;6. Conclusions;747
15.10.7;Acknowledgments;747
15.10.8;References;747
16;Author Index of Volumes 152 and 153;749
17;Subject Index of Volumes 152 and 153;751



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.