E-Book, Englisch, 786 Seiten, eBook
Yi / Du / Zhang Composite Materials Engineering, Volume 1
1. Auflage 2018
ISBN: 978-981-10-5696-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Fundamentals of Composite Materials
E-Book, Englisch, 786 Seiten, eBook
ISBN: 978-981-10-5696-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book is the first of two volumes providing comprehensive coverage of the fundamental knowledge and technology of composite materials. It covers a variety of design, fabrication and characterization methods as applied to composite materials, particularly focusing on the fiber-reinforcement mechanism and related examples. It is ideal for graduate students, researchers, and professionals in the fields of Materials Science and Engineering, and Mechanical Engineering.
Prof. Xiaosu Yi is the director of the National Key Laboratory of Advanced Composites at Beijing Institution of Aeronautical Materials. His major research fields include high performance structural composite materials, functional composite materials, materials process and engineering, and polymeric materials. Prof. Yi is the author or editor of more than 10 academic books and over 300 academic papers. He is a Member of the ACCM Council, IOC member of WRCAP; standing member of the Chinese Material Research Society and Chinese Society for Composite Materials; chief editor of Acta Materiae Compositae Sinica, Aviation Journal, and the Journal of Aeronautical Materials, among others.Prof. Shanyi Du, a member of the Chinese Academy of Engineering, works at the Center for Composite Materials and Structures of Harbin Institution of Technology (HIT), where he is involved in education and research courses in mechanics and composite materials. His achievements include theories and methods for performance characterization and safety evaluation of composite materials. Prof. Du has authored or co-authored over 260 academic papers, as well as 10 monographs on mechanics and composite materials. Prof. Du is president of the Chinese Society for Composite Materials and executive councilor of the International Committee on Composite Materials (ICCM), member of the editorial committees of several international journals, such as Composite Science and Technology, ACTA MACHANICA SOLIDA SINICA, and the International Journal of Computational Methods. Prof. Litong Zhang, a member of the Chinese Academy of Engineering, works in Northwestern Polytechnical University. She was engaged in research on aerospace ceramic and composites in the last 20 years, and completed a series of innovative research projects. She and her research group innovated manufacturing techniques in the field of continuous fiber reinforced silicon carbide ceramic matrix composites and established equipment systems with independent intellectual property rights. She received 26 national invention patents and the First Class Award for Technological Inventions of People's Republic of China in 2004. Prof. Zhang has published more than 260 scientific papers and several books. She is the director of academic board at the National Key Laboratory of Thermostructure Composite Materials and vice-president of Chinese Society for Composite Materials.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;Editors and Contributors;8
4;Abbreviations;11
5;1 An Introduction to Composite Materials;23
5.1;1.1 Introduction to Composite Science and Engineering;24
5.2;1.2 Surfaces and the Reinforcement–Matrix Interface;25
5.2.1;1.2.1 Fiber–Metal Laminates and Their Interface Structures;26
5.2.2;1.2.2 Mechanical Characteristics and Aging Behavior of the Interface Structures of FMLs;31
5.2.3;1.2.3 Interfaces of Fiber-Reinforced Resin Matrixes;34
5.3;1.3 Multi-scale, Multi-level Construction and Optimization of Composites;35
5.3.1;1.3.1 Composite Development and Controlled Conditions;36
5.3.2;1.3.2 The “Ex Situ” Toughening Technique and Its Origins;37
5.3.3;1.3.3 “Ex Situ” Liquid Molding;39
5.3.4;1.3.4 Multi-Scale and Multi-Level Optimization;42
5.3.5;1.3.5 Advanced Liquid Molding Resin Systems;45
5.3.6;1.3.6 Unity and the Struggle of Opposites of “Ex Situ” and “In Situ” Approaches;46
5.3.7;1.3.7 Summary and Prospects;47
5.4;1.4 Advanced Manufacturing Techniques;47
5.4.1;1.4.1 Definition and Development of Integrated Manufacturing Technology;48
5.4.2;1.4.2 Integration Technology of Textile Composites;49
5.4.3;1.4.3 Automated Tape-Laying (ATL) Technology;50
5.4.4;1.4.4 Preforming Technology of Integrated Structures;54
5.4.5;1.4.5 Virtual and Intelligent Manufacturing Technologies;56
5.5;1.5 Development Trends of Advanced Composites;59
5.5.1;1.5.1 Development Trends of Low-dimensional Composites;59
5.5.2;1.5.2 Self-assembly Behavior of Low-dimensional Composites;60
5.5.3;1.5.3 Oriented Carbon Nanotube (CNT) Array/Polymer Matrix Composites;62
5.5.4;1.5.4 Function-Integrated Technology of Composite Structures;65
5.5.5;1.5.5 Modeling and Simulation Technology;73
5.6;1.6 Advanced Composites in National Economics and Defense;80
5.7;Acknowledgements;81
5.8;References;81
6;2 Fiber Reinforcement;84
6.1;2.1 Glass Fibers;85
6.1.1;2.1.1 E-Glass Fibers;88
6.1.2;2.1.2 AR-Glass Fibers;88
6.1.3;2.1.3 S-Glass Fibers;88
6.1.4;2.1.4 M-Glass Fibers;89
6.1.5;2.1.5 High Silica Glass Fibers;90
6.1.6;2.1.6 Specialty Glass Fibers;90
6.2;2.2 Carbon Fibers;91
6.2.1;2.2.1 Polyacrylonitrile (PAN)-Based Carbon Fibers;97
6.2.2;2.2.2 Pitch-Based Carbon Fibers;102
6.2.3;2.2.3 Rayon-Based Carbon Fibers;105
6.3;2.3 Ceramic Fibers;106
6.3.1;2.3.1 Alumina Fibers;109
6.3.2;2.3.2 Silicon Carbide Fibers;111
6.3.2.1;2.3.2.1 Chemical Vapor-Deposited (CVD) SiC Fibers;111
6.3.2.2;2.3.2.2 Pre-ceramic Polymer-Derived (PPD) SiC Fibers;113
6.3.3;2.3.3 Boron Nitride (BN) Fibers;123
6.3.4;2.3.4 Boron Fibers;125
6.4;2.4 Aromatic Polyamide Fibers;126
6.5;2.5 Aromatic Polyester Fibers;133
6.6;2.6 Heterocyclic Polymer Fibers;136
6.6.1;2.6.1 Polybenzoxazole (PBO) Fibers;136
6.6.2;2.6.2 Polybenzothiazoles (PBT) Fibers;140
6.6.3;2.6.3 Polybenzimidazole (PBI) Fibers;141
6.7;2.7 Ultra-High Molecular Weight Polyethylene (UHMWPE) Fibers;142
6.8;2.8 Characterization Methods for Long Fibers;146
6.8.1;2.8.1 Mechanical Characterization Methods;146
6.8.1.1;2.8.1.1 Monofilaments;146
6.8.1.2;2.8.1.2 Yarns;148
6.8.2;2.8.2 Physical Characterization Methods;149
6.8.2.1;2.8.2.1 Density;149
6.8.2.2;2.8.2.2 Electrical Resistivity;150
6.8.2.3;2.8.2.3 Coefficients of Thermal Conductivity and Thermal Expansion;151
6.9;2.9 Whiskers;152
6.9.1;2.9.1 Ceramic Whiskers;153
6.9.1.1;2.9.1.1 SiC Whiskers;154
6.9.1.2;2.9.1.2 Si3N4 Whiskers;156
6.9.1.3;2.9.1.3 Potassium Titanate Whiskers;158
6.9.1.4;2.9.1.4 Aluminum Borate Whiskers;159
6.9.1.5;2.9.1.5 ZnO Whiskers;160
6.9.1.6;2.9.1.6 TiN Whiskers;161
6.9.2;2.9.2 Carbon Whiskers;162
6.9.2.1;2.9.2.1 Carbon (Graphite) Whiskers;162
6.9.2.2;2.9.2.2 Carbon Nanotubes;163
6.10;References;168
7;3 Polymer Matrix Materials;172
7.1;3.1 The Performance of Composite Resin Matrixes;173
7.1.1;3.1.1 Thermal Resistances;173
7.1.2;3.1.2 Coefficient of Thermal Expansion (CTE);174
7.1.3;3.1.3 Mechanical Properties;175
7.1.4;3.1.4 Electric Properties;176
7.2;3.2 Characterization of Composite Resin Matrixes;177
7.2.1;3.2.1 Characterization of Curing Behavior in Composite Resin Matrixes;177
7.2.2;3.2.2 Characterization of Physical Properties in Composite Resin Matrixes;178
7.2.3;3.2.3 Characterization of Resin Thermal Resistance and Stabilities;180
7.2.4;3.2.4 Characterization of Composite Resin Matrix Electric Performance;183
7.2.5;3.2.5 Characterization of Composite Resin Matrix Mechanical Performance;183
7.3;3.3 High-Performance Phenolic Resin Matrixes;187
7.3.1;3.3.1 The Synthesis of Phenolic Resins;188
7.3.1.1;3.3.1.1 Linear Phenolic Resins;188
7.3.1.2;3.3.1.2 Thermosetting Resins;189
7.3.1.3;3.3.1.3 Innovation in Phenolic Resin Synthesis;190
7.3.2;3.3.2 Phenolic Resin Curing;192
7.3.2.1;3.3.2.1 The Curing of Thermosetting Phenolic Resins;193
7.3.2.2;3.3.2.2 Linear Phenolic Resin Curing and Curing Agents;193
7.3.3;3.3.3 Modification of Phenolic Resins;194
7.3.3.1;3.3.3.1 Toughening of the Phenolic Resins;195
7.3.3.2;3.3.3.2 The Structural Modification of Phenolic Resins and New Products;198
7.3.4;3.3.4 Progress in Phenolic Resin Composites and Processing Techniques;213
7.3.4.1;3.3.4.1 Resin Processing Requirements;214
7.3.4.2;3.3.4.2 Composite Processing Performance;215
7.3.4.3;3.3.4.3 Phenolic Resin Composite Applications [27];215
7.4;3.4 High-Performance Epoxy Resin Matrixes;216
7.4.1;3.4.1 Synthesis of Epoxy Resins;216
7.4.2;3.4.2 Curing of Epoxy Resins and Curing Agents;217
7.4.2.1;3.4.2.1 Curing Reaction;217
7.4.2.2;3.4.2.2 New Curing Agents;218
7.4.3;3.4.3 Structures and Performance of Epoxy Resins;221
7.4.3.1;3.4.3.1 Diglycidyl Ether Resins;221
7.4.3.2;3.4.3.2 Poly-Glycidyl Ether Resins;224
7.4.3.3;3.4.3.3 Glycidyl Amine Resins;229
7.4.4;3.4.4 Epoxy Resin Toughening;232
7.4.4.1;3.4.4.1 Rubber Elastomer Toughening;233
7.4.4.2;3.4.4.2 Thermoplastic Resin Toughening;234
7.4.4.3;3.4.4.3 Thermal Liquid Crystal Toughening;236
7.4.5;3.4.5 High-Performance Epoxy Composites;237
7.4.5.1;3.4.5.1 High-Performance Epoxy Composite Properties;237
7.4.5.2;3.4.5.2 High-Performance Composite Applications;244
7.5;3.5 Bismaleimide (BMI) Resin Matrixes;245
7.5.1;3.5.1 BMI Physical Properties;246
7.5.1.1;3.5.1.1 BMI Monomers;246
7.5.1.2;3.5.1.2 BMI Curing;247
7.5.2;3.5.2 BMI Resin Modification;249
7.5.2.1;3.5.2.1 Copolymerization with Alkenyl Compounds;250
7.5.2.2;3.5.2.2 Binary Amine-Modified BMI;257
7.5.2.3;3.5.2.3 Thermoplastic Resin-Modified BMI;260
7.5.2.4;3.5.2.4 Epoxy Resin-Modified BMI;266
7.5.2.5;3.5.2.5 Cyanate Ester (CE)-Modified BMI;267
7.5.2.6;3.5.2.6 New BMI Monomer Synthesis;268
7.5.2.7;3.5.2.7 Processing Modification;280
7.5.3;3.5.3 BMI Application;282
7.5.3.1;3.5.3.1 Main Commercial BMI Resins;282
7.5.3.2;3.5.3.2 BMI Composites and Their Performance;285
7.5.3.3;3.5.3.3 BMI Resins and Their Composite Application;285
7.6;3.6 Cyanate Ester Resin Matrixes;290
7.6.1;3.6.1 Synthesis of Cyanate Ester Resin Monomers;291
7.6.2;3.6.2 Curing Reaction of Cyanater Ester Resins;295
7.6.2.1;3.6.2.1 Curing Reaction Mechanism;295
7.6.2.2;3.6.2.2 Curing Reaction Kinetics of the Cyanate Ester;297
7.6.2.3;3.6.2.3 Effect of Catalyst on the Curing Reaction;299
7.6.3;3.6.3 Cyanate Ester-Modified Epoxy and BMI Resins;305
7.6.3.1;3.6.3.1 Cyanate Ester-Modified Epoxy Resins;305
7.6.3.2;3.6.3.2 Cyanate Ester-Modified Bismaleimide Resin (BMI);312
7.6.4;3.6.4 Cyanate Ester Resin and Its Composite Performances and Applications;315
7.6.4.1;3.6.4.1 Cyanate Ester Resin Structure and Performance;315
7.6.4.2;3.6.4.2 Cyanate Ester Resin Matrix Composite Performance and Applications;324
7.7;3.7 Thermosetting Polyimide Resin Matrixes;328
7.7.1;3.7.1 PMR Polyimide;330
7.7.1.1;3.7.1.1 Synthesis of PMR Polyimide;333
7.7.1.2;3.7.1.2 Performance of PMR Polyimide;339
7.7.1.3;3.7.1.3 Modification of PMR Polyimide;345
7.7.2;3.7.2 Acetylene-Terminated Polyimide;355
7.7.2.1;3.7.2.1 Synthesis of Acetylene-Terminated Polyimide;356
7.7.2.2;3.7.2.2 Curing of Acetylene-Terminated Polyimide;360
7.7.2.3;3.7.2.3 Performance of Acetylene-Terminated Polyimides;362
7.7.3;3.7.3 Polyimide Composite Application;367
7.8;References;370
8;4 Composite Structure Design and Analysis;374
8.1;4.1 General;374
8.1.1;4.1.1 Overview;374
8.1.2;4.1.2 Applications of Advanced Composite Materials in Aircraft Structures;375
8.1.3;4.1.3 Properties of Advanced Composite Materials;376
8.1.3.1;4.1.3.1 Structural Performance;376
8.1.3.2;4.1.3.2 Structure Design and Processing;380
8.1.4;4.1.4 Overview of Composite Structure Design and Certification;380
8.1.4.1;4.1.4.1 Design Essentials;380
8.1.4.2;4.1.4.2 Affordability of Composite Structures in Low-Cost Design and Manufacture;381
8.2;4.2 Requirements of Structure Design;382
8.2.1;4.2.1 General Requirements of Structure Design;382
8.2.2;4.2.2 Requirements of Military Aircraft Structure Design;382
8.2.2.1;4.2.2.1 Static Strength;382
8.2.2.2;4.2.2.2 Durability;383
8.2.2.3;4.2.2.3 Damage Tolerance;386
8.2.3;4.2.3 Requirements for Civil Aircraft Structure Design;388
8.2.3.1;4.2.3.1 Advisory Circular AC 20-107A “Composite Structure”;388
8.2.3.2;4.2.3.2 Differences from Military Aircraft Requirement;389
8.2.3.3;4.2.3.3 AC20-107A Conformity Requirements;390
8.3;4.3 Material Selection in Structure Design and Structural Processing;392
8.3.1;4.3.1 Principles of Structural Material Selection;392
8.3.1.1;4.3.1.1 General Principles;392
8.3.1.2;4.3.1.2 Property Data Sources;393
8.3.1.3;4.3.1.3 Evaluation of Replacement Materials;393
8.3.2;4.3.2 Environmental Effects of Material Performances;394
8.3.3;4.3.3 Selection and Use of Matrices and Fibers;394
8.3.4;4.3.4 Structural Processing Ability;395
8.3.4.1;4.3.4.1 Principles of Processing Method Selection;396
8.3.4.2;4.3.4.2 Typical Structure Processing Methods;397
8.4;4.4 Structure Design—Determination of Design Allowables;397
8.4.1;4.4.1 Allowables and Design Allowables;397
8.4.2;4.4.2 General Principles for Design Allowables Determination;398
8.4.3;4.4.3 Current Status;398
8.4.4;4.4.4 Approach to Increasing Design Allowables;398
8.5;4.5 Building Block Approach for Composite Structure Design Verification;400
8.5.1;4.5.1 Introduction and Philosophy;400
8.5.2;4.5.2 General Procedures for BBA Implementation;401
8.5.3;4.5.3 Boeing 777 Aircraft Composite Primary Structure Building Block Approach;403
8.6;4.6 Structural Design and Strength and Stiffness Analysis;404
8.6.1;4.6.1 Composite Structure Design Concepts;404
8.6.2;4.6.2 Laminate Design and Analysis;405
8.6.2.1;4.6.2.1 Ply Design Guidelines;405
8.6.2.2;4.6.2.2 Laminate Stiffness Analysis;407
8.6.2.3;4.6.2.3 Laminate Strength and Failure Analysis;417
8.6.2.4;4.6.2.4 Examples of Laminate Structure Design;422
8.6.3;4.6.3 Sandwich Structure Design and Analysis;425
8.6.3.1;4.6.3.1 Basic Design Concept of Sandwich Structure;425
8.6.3.2;4.6.3.2 Sandwich Stress Analysis and Strength Correction;432
8.6.4;4.6.4 Composite Structure Anti-crash and Energy Absorption Design;434
8.6.4.1;4.6.4.1 Aircraft Body Structure Crash Resistant Design Features;434
8.6.4.2;4.6.4.2 Composite Crash Absorption Component Design;435
8.6.4.3;4.6.4.3 Structural Design of Composite Crash/Absorption Floor;436
8.6.5;4.6.5 Analysis of Thick Cross-sectional Composite (Thick Laminate);438
8.6.5.1;4.6.5.1 Features of Thick Cross-section Composites;439
8.6.5.2;4.6.5.2 3D Stress Analysis of Thick Composites;439
8.6.5.3;4.6.5.3 Determination of the Properties of Thick Composites;441
8.7;4.7 Analysis of Structural Stability;445
8.7.1;4.7.1 Stability Analysis of Laminates;445
8.7.1.1;4.7.1.1 Buckling Analysis of Rectangular Flat Plates;445
8.7.1.2;4.7.1.2 Analysis of Buckling and Crippling of Stiffened Stringer;451
8.7.1.3;4.7.1.3 Stability Analysis of Stiffened Stringer;461
8.7.1.4;4.7.1.4 Influence of Layering Order on Stability;463
8.7.2;4.7.2 Overview of Post-buckling and Post-buckling Strength Analysis;466
8.7.2.1;4.7.2.1 Characteristics of Post-buckling Analysis;467
8.7.2.2;4.7.2.2 Reinforced Laminates and Post-buckling Laminate Properties;468
8.7.2.3;4.7.2.3 Post-buckling Strength in a Project;470
8.7.3;4.7.3 Buckling Analysis of Sandwich Structures;476
8.8;4.8 Joint Design and Analysis;482
8.8.1;4.8.1 Characteristics of Composite Joints;483
8.8.1.1;4.8.1.1 Characteristics of Adhesively Bonded Joints;483
8.8.1.2;4.8.1.2 Characteristics of Mechanically Fastened Joints;484
8.8.1.3;4.8.1.3 Characteristics of Combined Bonded-and-Bolted (or Riveted) Joints;484
8.8.1.4;4.8.1.4 Principles for Selecting Composite Joint Methods;485
8.8.2;4.8.2 Adhesively Bonded Joints;485
8.8.2.1;4.8.2.1 Characteristics of Bonded Joint Design;486
8.8.2.2;4.8.2.2 Main Factors Affecting Adhesive Joints Strength;486
8.8.2.3;4.8.2.3 Adhesives;488
8.8.2.4;4.8.2.4 General Design Requirements for Adhesive Bonded Joints;493
8.8.2.5;4.8.2.5 Design of Thick Section Joints;498
8.8.2.6;4.8.2.6 Detailed Design of Composite Bonded Structure;499
8.8.2.7;4.8.2.7 Durability Design of Bonded Structures;502
8.8.2.8;4.8.2.8 Summary of Bonded Joint Analysis;502
8.8.3;4.8.3 Mechanically Fastened Joints;503
8.8.3.1;4.8.3.1 Design of Mechanically Fastened Joints;503
8.8.3.1.1;Characteristics of Mechanical Joint Design;503
8.8.3.1.2;Main Factors Affecting Mechanical Joint Strength;504
8.8.3.1.3;Design Basic of Mechanical Joints;506
8.8.3.1.4;Design of Riveted Joints;512
8.8.3.1.5;Fatigue of Mechanical Joints;513
8.8.3.2;4.8.3.2 Design of Main Load Carrying Joints;514
8.8.3.2.1;Characteristics of Multirow Fastener Joint Design;514
8.8.3.2.2;General Principles of Joint Area Design;515
8.8.3.3;4.8.3.3 Static Analysis of Mechanical Joints;517
8.8.3.3.1;Finite Element Analysis of Fastener Load Distribution in Mechanical Joints;518
8.8.3.3.2;Detailed Stress Analysis Methods;519
8.8.3.3.3;Semiempirical Methods;520
8.8.3.4;4.8.3.4 Checking Mechanical Joint Strength;523
8.8.3.4.1;Allowable Bearing Stress of Full Carbon Fiber Composites;523
8.8.3.4.2;Strength Checking of Single Fastener Joints;528
8.8.3.4.3;Strength Checking of Multirow Fastener Joints;529
8.9;4.9 Damage Tolerance and Durability;530
8.9.1;4.9.1 Overview;530
8.9.1.1;4.9.1.1 General Concepts;530
8.9.1.2;4.9.1.2 Composite Damage Tolerance and Durability;531
8.9.2;4.9.2 Evaluation of the Effects of Defects/Damage on Strength;532
8.9.2.1;4.9.2.1 Manufacturing Defects;532
8.9.2.2;4.9.2.2 Operational Damage;532
8.9.2.3;4.9.2.3 Evaluation on the Effects of Defects/Damage on Strength;533
8.9.3;4.9.3 Analysis of Durability and Damage Tolerance;535
8.9.3.1;4.9.3.1 Analytical Methods Applied to Damage Tolerance;535
8.9.3.2;4.9.3.2 Analysis of Durability;543
8.9.4;4.9.4 Measures to Improve Durability and Damage Tolerance;544
8.9.5;4.9.5 Characterization of Composite Damage Resistance and Damage Tolerance;547
8.9.5.1;4.9.5.1 Review;547
8.9.5.2;4.9.5.2 Complete Description of Damage Resistance, Tolerance and Knee Point;548
8.9.5.3;4.9.5.3 Characterization of Composite Damage Tolerance and Damage Resistance;550
8.9.5.4;4.9.5.4 Comparison Between the Recommended Method and the Traditional CAI Evaluation;551
8.10;4.10 Environmental Effects and Protection;552
8.10.1;4.10.1 Introduction;552
8.10.2;4.10.2 Environmental Design Criterion;552
8.10.2.1;4.10.2.1 Hygrothermal Environment;552
8.10.2.2;4.10.2.2 Physical Impacts;553
8.10.2.3;4.10.2.3 Aging Environment;554
8.10.3;4.10.3 Hygrothermal Environment Effect;555
8.10.3.1;4.10.3.1 Aircraft Service Environment in China;555
8.10.3.2;4.10.3.2 Prediction of Moisture Absorption Diffusion Behaviors;555
8.10.3.2.1;Theoretic Predictions;555
8.10.3.2.2;Moisture Absorption Experiments;558
8.10.3.3;4.10.3.3 Principle and Methodology of Accelerated Moisture Absorption;559
8.10.3.4;4.10.3.4 Influence of Hygrothermal Environment on Composite Performance;560
8.10.3.4.1;Influence of Hygrothermal Environment on Physical Properties of Composites;561
8.10.3.4.2;Influence of Hygrothermal Environment on Mechanical Properties of Composites;563
8.10.3.4.3;Influence of Hygrothermal Environment on Composite Failure Mode;575
8.10.3.4.4;Hygrothermal Stress Analysis;575
8.10.4;4.10.4 Hygrothermal Aging Response;576
8.10.4.1;4.10.4.1 Influence of Hygrothermal Aging on Composite Physical Properties;577
8.10.4.2;4.10.4.2 Influence of Hygrothermal Aging on Mechanical Properties of Laminates;578
8.10.4.3;4.10.4.3 Prediction of Composite Aging Effects;581
8.10.4.3.1;Physical Aging;581
8.10.4.3.2;Physical Aging of Polymers;581
8.10.4.3.3;Aging Response of Unidirectional Laminate;583
8.10.4.3.4;Aging Response of Laminate;584
8.10.4.4;4.10.4.4 Aging Test Results of Boeing Commercial Group;584
8.10.4.5;4.10.4.5 Accelerated Hygrothermal Aging Scheme for Fighter Aircraft and Test Results;586
8.10.4.6;4.10.4.6 Accelerated Hygrothermal Aging Spectrum for Transport Airplane and Test Results;589
8.10.5;4.10.5 Protection of Composite Structures in Corrosive Environments;591
8.10.5.1;4.10.5.1 Control of Corrosion in Composites;592
8.10.5.2;4.10.5.2 Galvanic Erosion Between Composites and Metals;595
8.10.5.3;4.10.5.3 Protective Coatings for Composites;597
8.10.6;4.10.6 Relationships Between Atmospheric Aging, Accelerated Atmosphere Aging, and Hygrothermal Aging and Recommendations;598
8.11;4.11 Impact Damage Tolerance Reliability of Composite Structures;602
8.11.1;4.11.1 Introduction of Structural Reliability Design and Analysis;602
8.11.1.1;4.11.1.1 General;602
8.11.1.2;4.11.1.2 Reliability Function;602
8.11.1.3;4.11.1.3 Structural Reliability;603
8.11.2;4.11.2 Types of In-Service Damage;603
8.11.3;4.11.3 Random Variables;603
8.11.4;4.11.4 Impact Threat Distribution;604
8.11.5;4.11.5 Cases and Solution Steps;606
9;5 Composite Property Testing, Characterization, and Quality Control;610
9.1;5.1 Guidelines for Composite Property Testing;612
9.1.1;5.1.1 Features of Property Characterization of Composites;612
9.1.2;5.1.2 Test Design and Classification;614
9.1.3;5.1.3 Test Program Planning;617
9.1.3.1;5.1.3.1 Test Property Selection;617
9.1.3.2;5.1.3.2 Test Method Selection;618
9.1.3.3;5.1.3.3 Population Sampling;620
9.1.3.4;5.1.3.4 Material and Processing Variation;622
9.1.3.5;5.1.3.5 Sample Preparation and Inspection;625
9.1.3.6;5.1.3.6 Moisture Absorption and Conditioning Factors;627
9.1.3.7;5.1.3.7 Non-ambient Testing Environments;634
9.1.4;5.1.4 Data Reduction;636
9.1.4.1;5.1.4.1 Data Outlier Screening and Processing;636
9.1.4.2;5.1.4.2 Data Normalization;638
9.1.4.3;5.1.4.3 Data Equivalence and Pooling;641
9.1.5;5.1.5 Requirements of Test Reports;642
9.2;5.2 Characterization of Mechanical Properties and Recommended Testing Matrices;642
9.2.1;5.2.1 Expression of Mechanical Properties for Material Screening;642
9.2.2;5.2.2 Expression of Mechanical Properties for Material Specification;645
9.2.3;5.2.3 Determination of Material Allowables and Recommended Test Matrices;647
9.2.3.1;5.2.3.1 Laminar Level Material Allowables and Quasi-isotropic Laminate Mechanical Properties Required by Structural Applications;647
9.2.3.2;5.2.3.2 Material Allowables Related to Structural Design;651
9.2.4;5.2.4 Expression of Material Equivalence Evaluation and Mechanical Property Testing Data;657
9.2.4.1;5.2.4.1 Material Alternatives;657
9.2.4.2;5.2.4.2 Scope of Material Equivalence;658
9.2.4.3;5.2.4.3 Material Equivalence Evaluation Methods;659
9.2.5;5.2.5 Evaluation of Ability to Withstand Impact;662
9.3;5.3 Characterization of Prepreg Performances;668
9.3.1;5.3.1 Advanced Techniques for Prepreg Characterization;668
9.3.1.1;5.3.1.1 Thermal Analysis;669
9.3.1.2;5.3.1.2 Infrared Spectroscopy;676
9.3.1.3;5.3.1.3 Gel Penetration Chromatography (GPC);677
9.3.1.4;5.3.1.4 High-Pressure Liquid Chromatography;678
9.3.1.5;5.3.1.5 Rheological Analysis;679
9.3.1.6;5.3.1.6 Dynamic Dielectric Analysis;680
9.3.2;5.3.2 Characterization of Prepreg Physical Properties;682
9.3.2.1;5.3.2.1 Physical Description of Reinforcement;682
9.3.2.2;5.3.2.2 Resin Content;683
9.3.2.3;5.3.2.3 Fiber Content;684
9.3.2.4;5.3.2.4 Dissolvable Resin Content;684
9.3.2.5;5.3.2.5 Volatile Content;685
9.3.2.6;5.3.2.6 Inorganic Filler and Additive Content;685
9.3.2.7;5.3.2.7 Fiber Mass Per Unit Area;685
9.3.3;5.3.3 Characterization of Prepreg Processing Quality;686
9.3.3.1;5.3.3.1 Viscosity;686
9.3.3.2;5.3.3.2 Resin Flow Ability;686
9.3.3.3;5.3.3.3 Gel Time;687
9.3.3.4;5.3.3.4 Cured Single Ply Thickness;687
9.3.3.5;5.3.3.5 Operation Life;687
9.3.3.6;5.3.3.6 Shelf Life;687
9.4;5.4 Laminate Performance Testing;688
9.4.1;5.4.1 Basic Physical Properties;688
9.4.1.1;5.4.1.1 Density;688
9.4.1.2;5.4.1.2 Fiber Volume Content;689
9.4.1.3;5.4.1.3 Cured Ply Thickness;690
9.4.1.4;5.4.1.4 Void Content;690
9.4.1.5;5.4.1.5 Glass Transition Temperature;691
9.4.1.6;5.4.1.6 Moisture Absorption;691
9.4.1.7;5.4.1.7 Dimensional Stability (Thermal and Water Absorption);693
9.4.1.8;5.4.1.8 Thermal Conductivity;694
9.4.1.9;5.4.1.9 Specific Thermal Capacity;694
9.4.1.10;5.4.1.10 Thermal Diffusion;694
9.4.1.11;5.4.1.11 Outgassing;695
9.4.1.12;5.4.1.12 Flame Retardant and Smoke Suppression Properties;695
9.4.2;5.4.2 Basic Mechanical Properties;696
9.4.2.1;5.4.2.1 Tensile Property Testing;696
9.4.2.2;5.4.2.2 Compression Testing;701
9.4.2.3;5.4.2.3 In-Plane Shear Testing;706
9.4.2.4;5.4.2.4 Interlaminar Shear Testing;713
9.4.2.5;5.4.2.5 Bending Property Testing;714
9.4.3;5.4.3 Test Methods Related to Structural Performance;717
9.4.3.1;5.4.3.1 Open-Hole Tensile and Compression;717
9.4.3.2;5.4.3.2 Filled-Hole Tensile and Compression Testing;718
9.4.3.3;5.4.3.3 Single Pin Bearing Strength Testing;718
9.4.3.4;5.4.3.4 Model I Interlaminar Fracture Toughness;719
9.4.3.5;5.4.3.5 Mixed Interlaminar Fracture Toughness GC;719
9.4.3.6;5.4.3.6 Quasi-static Indentation;720
9.4.3.7;5.4.3.7 Compression After Impact;721
9.4.3.8;5.4.3.8 Model II Interlaminar Fracture Toughness;726
9.4.4;5.4.4 Fabric-Reinforced Textile Composite Mechanical Property Testing;726
9.4.5;5.4.5 Summary of Mechanical Property Test Methods;727
9.4.6;5.4.6 Electrical Performance Testing;727
9.4.7;5.4.7 Environmental Effects and Resistance Assessment;746
9.5;5.5 Composite Quality Evaluation and Control;747
9.5.1;5.5.1 Composite Quality Evaluation;748
9.5.1.1;5.5.1.1 Complexity of Quality Evaluation;748
9.5.1.2;5.5.1.2 Problems in Quality Evaluation;749
9.5.1.3;5.5.1.3 Quality Evaluation Methods;751
9.5.2;5.5.2 Composite Quality Control;754
9.5.3;5.5.3 Processing Quality Control;755
9.5.3.1;5.5.3.1 Importance of Processing Quality Control;756
9.5.3.2;5.5.3.2 Theoretical Curing Model and Computer Simulation;758
9.5.3.3;5.5.3.3 In Situ Process Monitoring;771
9.5.3.4;5.5.3.4 Statistical Processing Control;781
9.5.3.5;5.5.3.5 Experiential Control Methods;784
9.5.3.6;5.5.3.6 Processing Quality Inspection;784
9.6;References;785
An Introduction to Composite Materials.- Fiber Reinforcement.- Polymer Matrix Materials.- Composite Structure Design and Analysis.- Composite Property Testing, Characterization and Quality Control.