Buch, Englisch, 813 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1258 g
Reihe: STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health
Strategies for Enhanced Food Security by Using Machine Learning and Artificial Intelligence
Buch, Englisch, 813 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1258 g
Reihe: STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health
ISBN: 978-3-031-38401-1
Verlag: Springer Nature Switzerland
Specialty crops are defined as fruits and vegetables, tree nuts, dried fruits, horticulture, and nursery crops including floriculture. The value of specialty crop production in the United States accounted for 18.44 % of the $433.569 billion in agriculture cash receipts collected in 2021. In 2020, that ratio was 21.47% of the $363.464 billion. Specialty crops are gaining increasing attention across nation as demonstrated in the 2018 farm bill (Agricultural Act of the 2018 Farm Bill (P.L. 115-334)) with the increased number of provisions addressing specialty crop issues, reflecting their growing role in the global economy.
The cultivation of Specialty crops, nevertheless, has its own challenges. Specialty crops are generally more sensitive to climatic stressors and require more comprehensive management compared to traditional row crops. Specialty crops face significant financial risks threatening US$1.6 Trillion global market due to their higher water demand.
The mission of the book is to prepare current and future software engineering teams, agriculture students, economists, macroeconomists with the skills and tools to fully utilize advanced data science, artificial intelligence, climate patterns, and economic models to develop software capabilities that help to achieve Specialty crops and economic sustainability, through improved productivity for years to come and ensure enough food for the future of the planet and generations to come!
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Lebensmitteltechnologie und Getränketechnologie
- Naturwissenschaften Agrarwissenschaften Agrarwissenschaften
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Naturwissenschaften Chemie Analytische Chemie Umweltchemie, Lebensmittelchemie
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Ökotrophologie (Ernährungs- und Haushaltswissenschaften)
Weitere Infos & Material
Chapter 1. Introduction.- Chapter 2. Specialty Crops.- Chapter 3. Time Series Data.- Chapter 4. Climate Models.- Chapter 5. Supervised Models.- Chapter 6. Unsupervised Models.- Chapter 7. Heuristic & Constraint Optimization.- Chapter 8. Deep Learning.- Chapter 9. Dimensionality Reduction.- Chapter 10. Ethical AI.- Chapter 11. Final Thought.