Singer | Finanzmarktökonometrie | Buch | sack.de

Singer Finanzmarktökonometrie



Zeitstetige Systeme und ihre Anwendung in Ökonometrie und empirischer Kapitalmarktforschung

1999, Band: 171, 340 Seiten, Kartoniert, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 534 g Reihe: Wirtschaftswissenschaftliche Beiträge
ISBN: 978-3-7908-1204-6
Verlag: Physica-Verlag HD


Singer Finanzmarktökonometrie

Finanzmarktökonometrie bietet eine umfassende Darstellung des zeitkontinuierlichen Modellierungsansatzes und seiner Anwendung in Ökonometrie, empirischer Kapitalmarktforschung und Optionsbewertung. Dabei liegt ein Schwerpunkt auf der Theorie, Simulation, Filterung und Parameterschätzung zeitstetiger Systeme. Besonders praxisrelevant ist hierbei die Annahme, daß Daten nur zu bestimmten Zeitpunkten als Panel oder Zeitreihen erhältlich sind. Zusätzlich wird davon ausgegangen, daß nur Teile des Systemzustands meßbar und mit Meßfehlern behaftet sind. Der aus der System- und Kontrolltheorie stammende kontinuierlich-diskrete Zustandsraum-Ansatz wird in Finanzmarktökonometrie konsequent auf Modellierungsprobleme derivativer Finanzprodukte angewandt. Umfangreiche graphische Darstellungen erläutern und verdeutlichen dem Leser die mathematische Formulierung der Thematik.

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Zeitstetige Modellierung.- I. Zeitstetige Dynamische Systeme.- 2. Deterministische Differentialgleichungen.- 2.1 Nichtlineare Systeme 1. Ordnung.- 2.2 Lineare Systeme 1, Ordnung.- 2.2.1 Inhomogene Gleichungen.- 2.2.2 Nichtautonome inhomogene Gleichungen.- 2.3 Beispiele.- 3. Stochastische Differentialgleichungen.- 3.1 Differentialgleichungen mit zufälligen Parametern.- 3.2 Wiener-Prozeß und weißes Rauschen.- 3.3 Stochastische Integrale und Itô-Differentialgleichungen.- 3.4 Itô-Kalkül.- 3.4.1 Totales Differential bei deterministischen Funktionen.- 3.4.2 Itô-Formel und Itô-Taylor-Entwicklung.- 3.4.3 Beispiele.- 3.5 Stratonovich-Integrale.- 3.6 Itô oder Stratonovich ?.- 3.7 Lineare stochastische Differentialgleichungen.- 3.8 Vorwärts- und Rückwärtsgleichung.- 3.8.1 Kramers-Moyal-Entwicklung.- 3.8.2 Fokker-Planck-Gleichung.- 3.8.3 Beispiele.- 3.8.4 Kolmogoroff- und Feynman-Kac-Formel.- 3.9 SDE, Markoff- und Diffusionsprozesse.- 3.10 Gleichungen für die Momente.- 4. Simulation von Differentialgleichungen.- 4.1 Deterministische Differentialgleichungen.- 4.2 Stochastische Differentialgleichungen.- 4.3 Starke und schwache Konvergenz.- 4.4 Beispiele.- 4.4.1 Wiener-Prozeß und weißes Rauschen.- 4.4.2 Geometrische Brownsche Bewegung.- 5. Zustandsraum-Modelle und Zustandsschätzung.- 5.1 Definition.- 5.2 Modelle mit farbigen Rauschtermen und Personeneffekten.- 5.3 CAR-, CARMA- und CARMAX-Modelle.- 5.4 Optimale Schätzung von Zuständen.- 5.5 Kalman-Filter (diskreter Fall).- 5.6 Kalman-Filter (kontinuierlich-diskreter Fall).- 5.7 Kalman-Bucy-Filter (kontinuierlicher Fall).- 5.8 Kalman-Glätter.- 5.9 Erweiterter Kalman-Filter (kontinuierlich-diskreter Fall).- 5.10 Nichtlinearer kontinuierlich-diskreter Filter.- 5.11 Gaußscher Kerndichte-Filter (kontinuierlich-diskreter Fall).- 5.12 Diskretisiertes kontinuierliches Sampling (DKS).- 5.13 Funktional-Integral-Filter (FIF).- 5.14 Zusammenfassung der nichtlinearen Filteralgorithmen.- 5.15 Beispiele.- 6. Parameterschätzung: Lineare Systeme.- 6.1 Lineare Systeme mit konstanten Koeffizienten.- 6.1.1 Identifikation der System-Matrizen.- 6.1.2 Exakte ML-Schätzung.- 6.1.3 Systeme ohne Meßmodell.- 6.1.4 Approximative ML-Schätzung.- 6.1.5 Beispiel: Das Phillips-Modell.- 6.1.6 Beispiel: Einstellung zu Gastarbeitern.- 6.2 Unregelmäßige Zeitabstände und fehlende Werte.- 6.2.1 AR-Modell mit exogenen Variablen (Sprung-Funktionen, Polygonzüge und Spline-Funktionen).- 6.2.2 Gemischte Stock- und Flow-Daten.- 6.3 Lineare Systeme mit zeitabhängigen Koeffizienten.- 6.3.1 Beispiel: variable Wachstumsmodelle.- 6.3.2 Beispiel: Brownsche Brücke.- 6.4 Parameterschätzung mit zeitstetigen Daten.- 7. Parameterschätzung: Nichtlineare Systeme.- 7.1 Diskretisiertes kontinuierliches Sampling.- 7.2 Erweiterter Kalman-Filter mit fehlenden Werten.- 7.3 EKF und Erweiterung des Systemzustands.- 7.4 Vorhersage-Fehler-Methoden.- 7.4.1 Zusammenhang mit der ML- und KQ-Methode.- 7.4.2 Rekursive Identifikation.- 7.5 Beispiel: Grenzzyklus-Modell.- 7.6 Exakte Likelihood mit Hilfe der Fokker-Planck-Gleichung.- 7.7 Beispiel: Diffusion im bimodalen Potential.- 7.8 Kerndichte-Filter, DKS und Funktional-Integral-Filter.- 7.8.1 ML-Methode.- 7.8.2 Bayes-Methode.- II. Statistische Bewertung von Optionen.- 8. Zeitstetige finanzwirtschaftliche Prozesse.- 8.1 Wiener-Prozeß und geometrische Brownsche Bewegung.- 8.2 CEV-Diffusionsprozesse.- 8.3 Modelle mit stochastischen Volatilitäten/GARCH-Limes.- 8.4 Verallgemeinerte Itô-Prozesse.- 9. Black-Scholes-Differentialgleichung.- 9.1 Optionen.- 9.2 Rückwärtsgleichung mit Inhomogenität.- 9.3 Martingal-Maß und der Satz von Girsanov.- 9.4 Feynman-Kac-Formel und Greensche Funktionen.- 9.5 Spezialfälle.- 9.5.1 Black-Scholes-Formel.- 9.5.2 Cox-Ross-Optionspreis-Formel (CEV-Modell).- 9.6 Numerische Lösungsmethoden.- 9.6.1 Monte Carlo-Simulation der Feynman-Kac-Formel.- 9.6.2 Endliche Differenzen-Methoden.- 10. Parameterschätzung.- 10.1 ML-Schätzung von Diffusionskoeffizienten


Ihre Fragen, Wünsche oder Anmerkungen

Ihre Nachricht*
Wie möchten Sie kontaktiert werden?
Anrede*
Titel
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Firma
Telefon
Fax
Bestellnr.
Kundennr.
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.