Alternative Energy in Power Electronics | E-Book | sack.de
E-Book

E-Book, Englisch, 378 Seiten

Alternative Energy in Power Electronics

E-Book, Englisch, 378 Seiten

ISBN: 978-0-12-409534-2
Verlag: Elsevier Reference Monographs
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This new resource is a practical overview of designing, testing and troubleshooting power electronics in alternative energy systems, providing you with the most important information on how power electronics components such as inverters, controllers and batteries can play a pivotal role in the successful implementation of green energy solutions for both stand-alone and grid-connected applications. You will learn how to choose the right components for diverse systems, from utility-scale wind farms to photovoltaic panels on single residences, how to get the most out of existing systems, and how to solve the tough challenges particular to alternative energy applications. Whether you are a renewables professional who needs to understand more about how power electronics impact energy output, or a power engineer who is interested in learning what new avenues the alternative energy revolution is opening for your work, start here with advice and explanations from the experts, including equations, diagrams and tables designed to help you understand and succeed.
Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generationIncludes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systemsCovers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells
Alternative Energy in Power Electronics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Alternative Energy in Power Electronics;4
3;Copyright;5
4;Contents;6
5;Contributors;12
6;Preface;14
7;Chapter 1: Power Electronics for Renewable Energy Sources;16
7.1;1.1 Introduction;17
7.2;1.2 Power Electronics for Photovoltaic Power Systems;18
7.2.1;1.2.1 Basics of Photovoltaics;18
7.2.2;1.2.2 Types of PV Power Systems;21
7.2.3;1.2.3 Stand-alone PV Systems;24
7.2.3.1;1.2.3.1 Battery Charging;24
7.2.3.2;1.2.3.2 Inverters for Stand-alone PV Systems;30
7.2.3.3;1.2.3.3 Solar Water Pumping;33
7.2.4;1.2.4 Hybrid Energy Systems;40
7.2.4.1;1.2.4.1 Series Configuration;41
7.2.4.2;1.2.4.2 Switched Configuration;42
7.2.4.3;1.2.4.3 Parallel Configuration;43
7.2.4.4;1.2.4.4 Control of Hybrid Energy Systems;45
7.2.5;1.2.5 Grid-connected PV Systems;47
7.2.5.1;1.2.5.1 Inverters for Grid-connected Applications;48
7.2.5.2;1.2.5.2 Inverter Classifications;48
7.2.5.3;1.2.5.3 Inverter Types;49
7.2.5.4;1.2.5.4 Power Control through PV Inverters;55
7.2.5.5;1.2.5.5 System Configurations;60
7.2.5.6;1.2.5.6 Grid-compatible Inverters Characteristics;62
7.3;1.3 Power Electronics for Wind Power Systems;64
7.3.1;1.3.1 Basics of Wind Power;66
7.3.1.1;1.3.1.1 Types of Wind Turbines;68
7.3.1.2;1.3.1.2 Types of Wind Generators;69
7.3.2;1.3.2 Types of Wind Power Systems;73
7.3.3;1.3.3 Stand-alone Wind Power Systems;73
7.3.3.1;1.3.3.1 Battery Charging with Stand-alone Wind Energy System;73
7.3.3.1.1;1.3.3.2 Wind Turbine Charge Controller;73
7.3.4;1.3.4 Wind–diesel Hybrid Systems;74
7.3.5;1.3.5 Grid-connected Wind Energy Systems;75
7.3.5.1;1.3.5.1 Soft Starters for Induction Generators;76
7.3.6;1.3.6 Control of Wind Turbines;77
7.3.6.1;1.3.6.1 Fixed Speed Wind Turbines;77
7.3.6.2;1.3.6.2 Variable Speed Wind Turbines;80
7.3.6.3;1.3.6.3 Discretely Variable Speed Systems;81
7.3.6.4;1.3.6.4 Continuously Variable Speed Systems;82
7.3.6.5;1.3.6.5 Types of Generator Options for Variable Speed WindTurbines Using Power Electronics;85
7.3.6.6;1.3.6.6 Isolated Grid Supply System with Multiple Wind Turbines;88
7.3.6.7;1.3.6.7 Power Electronics Technology Development;89
7.4; References;90
8;Chapter 2: Energy Sources;96
8.1;2.1 Introduction;97
8.2;2.2 Available Energy Sources;104
8.2.1;2.2.1 Coal;104
8.2.2;2.2.2 Oil;104
8.2.3;2.2.3 Natural Gas;105
8.2.4;2.2.4 Hydropower;105
8.2.5;2.2.5 Nuclear Power;105
8.2.6;2.2.6 Solar;106
8.2.7;2.2.7 Wind;106
8.2.8;2.2.8 Ocean;106
8.2.9;2.2.9 Hydrogen;107
8.2.10;2.2.10 Geothermal;108
8.2.11;2.2.11 Biomass;108
8.3;2.3 Electric Energy Generation Technologies;109
8.3.1;2.3.1 Thermoelectric Energy;109
8.3.2;2.3.2 Hydroelectric Energy;112
8.3.3;2.3.3 Solar Energy Conversion and Photovoltaic Systems;114
8.3.3.1;2.3.3.1 Photovoltaic Effect and Semiconductor Structure of PVs;114
8.3.3.2;2.3.3.2 PV Cell/Module/Array Structures;115
8.3.3.3;2.3.3.3 Active and Passive Solar Energy Systems;115
8.3.3.4;2.3.3.4 Components of a Complete Solar Electrical Energy System;116
8.3.3.5;2.3.3.5 I-V Characteristics of Photovoltaic (PV) Systems,PV Models, and Equivalent PV Circuit;117
8.3.3.6;2.3.3.6 Sun Tracking Systems;118
8.3.3.7;2.3.3.7 Maximum Power Point Tracking Techniques;119
8.3.3.8;2.3.3.8 Power Electronic Interfaces for PV Systems;122
8.3.4;2.3.4 Wind Turbines and Wind Energy Conversion Systems;126
8.3.4.1;2.3.4.1 Wind Turbine Power;128
8.3.4.2;2.3.4.2 Different Electrical Machines in Wind Turbines;130
8.3.4.3;2.3.4.3 Energy Storage Applications for Wind Turbines;135
8.3.5;2.3.5 Ocean Energy Harvesting;137
8.3.5.1;2.3.5.1 Ocean Wave Energy;137
8.3.5.2;2.3.5.2 Ocean Tidal Energy;144
8.3.5.3;2.3.5.3 Power Electronic Interfaces for Ocean Energy HarvestingApplications;146
8.3.6;2.3.6 Geothermal Energy Systems;148
8.3.7;2.3.7 Nuclear Power Plants;151
8.3.8;2.3.8 Fuel Cell Power Plants;153
8.4;2.4 Other Unconventional Energy Sources and Generation Technologies;157
8.5; Summary;157
8.6; References;158
9;Chapter 3: Photovoltaic System Conversion;170
9.1;3.1 Introduction;170
9.2;3.2 Solar Cell Characteristics;171
9.3;3.3 Photovoltaic Technology Operation;175
9.4;3.4 Maximum Power Point Tracking Components;176
9.4.1;3.4.1 Voltage Feedback Control;177
9.4.2;3.4.2 Power Feedback Control;177
9.5;3.5 MPPT Controlling Algorithms;177
9.5.1;3.5.1 Perturb and Observe (PAO);177
9.5.2;3.5.2 Incremental Conductance Technique (ICT);178
9.5.3;3.5.3 Constant Reference;179
9.5.4;3.5.4 Current-Based Maximum Power Point Tracker;179
9.5.5;3.5.5 Voltage-Based Maximum Power Point Tracker;180
9.5.6;3.5.6 Other Methods;180
9.6;3.6 Photovoltaic Systems' Components;181
9.6.1;3.6.1 Grid-Connected Photovoltaic System;181
9.6.2;3.6.2 Stand-Alone Photovoltaic Systems;184
9.7;3.7 Factors Affecting PV Output;185
9.7.1;3.7.1 Temperature;186
9.7.2;3.7.2 Dirt and Dust;186
9.7.3;3.7.3 DC–AC Conversion;186
9.8;3.8 PV System Design;186
9.8.1;3.8.1 Criteria for a Quality PV System;186
9.8.2;3.8.2 Design Procedures;186
9.8.3;3.8.3 Power-Conditioning Unit;187
9.8.4;3.8.4 Battery Sizing;187
9.9; Summary;187
9.10; References;187
10;Chapter 4: Wind Turbine Applications;192
10.1;4.1 Wind Energy Conversion Systems;193
10.1.1;4.1.1 Horizontal-axis Wind Turbine;193
10.1.1.1;4.1.1.1 The Rotor;194
10.1.1.2;4.1.1.2 The Gearbox;196
10.1.1.3;4.1.1.3 The Generator;196
10.1.1.4;4.1.1.4 Power Electronic Conditioner;198
10.1.2;4.1.2 Simplified Model of a Wind Turbine;198
10.1.3;4.1.3 Control of Wind Turbines;200
10.1.3.1;4.1.3.1 Variable Speed Variable Pitch Wind Turbine;201
10.2;4.2 Power Electronic Converters for Variable Speed Wind Turbines;203
10.2.1;4.2.1 Introduction;203
10.2.2;4.2.2 Full Power Conditioner System for Variable Speed Turbines;204
10.2.2.1;4.2.2.1 Double Three Phase Voltage Source ConverterConnected by a DC-link;205
10.2.2.2;4.2.2.2 Step-up Converter and Full Power Converter;210
10.2.2.3;4.2.2.3 Grid Connection Conditioning System;211
10.2.3;4.2.3 Rotor Connected Power Conditioner for Variable Speed Wind Turbines;213
10.2.3.1;4.2.3.1 Slip Power Dissipation;214
10.2.3.2;4.2.3.2 Single Doubly Fed Induction Machine;217
10.2.3.3;4.2.3.3 Power Converter in Wound-rotor Machines;218
10.2.3.4;4.2.3.4 Control of Wound-rotor Machines;220
10.2.4;4.2.4 Grid Connection Standards for WindFarms;223
10.2.4.1;4.2.4.1 Voltage Dip Ride-through Capability of Wind Turbines;223
10.2.4.2;4.2.4.2 Power Quality Requirements for Grid-connectedWind Turbines;225
10.3;4.3 Multilevel Converter for Very High Power Wind Turbines;226
10.3.1;4.3.1 Multilevel Topologies;226
10.3.2;4.3.2 Diode Clamp Converter (DCC);226
10.3.3;4.3.3 Full Converter for Wind Turbine Based on Multilevel Topology;228
10.3.4;4.3.4 Modeling;229
10.3.5;4.3.5 Control;231
10.3.5.1;4.3.5.1 Rectifier Control;231
10.3.5.2;4.3.5.2 Inverter Control;232
10.3.5.3;4.3.5.3 Sum of the Capacitor Voltages Control;232
10.3.5.4;4.3.5.4 Difference of the Capacitor Voltages Control;232
10.3.5.5;4.3.5.5 Modulation;233
10.3.6;4.3.6 Application Example;233
10.4;4.4 Electrical System of a WindFarm;235
10.4.1;4.4.1 Electrical Schematic of a Wind Farm;235
10.4.2;4.4.2 Protection System;237
10.4.3;4.4.3 Electrical System Safety: Hazards and Safeguards;237
10.5;4.5 Future Trends;237
10.5.1;4.5.1 Semiconductors;237
10.5.2;4.5.2 Power Converters;239
10.5.3;4.5.3 Control Algorithms;239
10.5.4;4.5.4 Offshore and Onshore Wind Turbines;240
10.6; Nomenclature;240
10.7; References;243
11;Chapter 5: High-Frequency-Link Power-Conversion Systems for Next-Generation;246
11.1;5.1 Introduction;247
11.2;5.2 Low-Cost Single-StageInverter;249
11.2.1;5.2.1 Operating Modes;249
11.2.2;5.2.2 Analysis;251
11.2.3;5.2.3 Design Issues;252
11.2.3.1;5.2.3.1 Choice of Transformer Turns-Ratio and Duty-RatioCalculation;252
11.2.3.2;5.2.3.2 Lossless Active-Clamp Circuit to Reduce Turn-Off Losses;253
11.3;5.3 Ripple-Mitigating Inverter;256
11.3.1;5.3.1 Zero-Ripple Boost Converter (ZRBC);257
11.3.1.1;5.3.1.1 HF Current-Ripple Reduction;258
11.3.1.2;5.3.1.2 Active Power Filter;261
11.3.2;5.3.2 HF Two-Stage DC–AC Converter;262
11.4;5.4 Universal Power Conditioner;262
11.4.1;5.4.1 Operating Modes;265
11.4.2;5.4.2 Design Issues;269
11.4.2.1;5.4.2.1 Duty-Ratio Loss;269
11.4.2.2;5.4.2.2 Optimization of the Transformer Leakage Inductance;271
11.4.2.3;5.4.2.3 Transformer Tapping;272
11.4.2.4;5.4.2.4 Effects of Resonance between the Transformer LeakageInductance and the Output Capacitance of the AC–AC-ConverterSwitches;273
11.5;5.5 Hybrid-Modulation-Based Multiphase HFL High-Power Inverter;274
11.5.1;5.5.1 Principles ofOperation;275
11.5.1.1;5.5.1.1 Three-Phase DC–AC Inverter;275
11.5.1.2;5.5.1.2 Switching Strategy for the AC–AC Converter;276
11.6; Acknowledgement;280
11.7; Copyright Disclosure;280
11.8; References;280
12;Chapter 6: Energy Storage;282
12.1;6.1 Introduction;283
12.2;6.2 Energy Storage Elements;284
12.2.1;6.2.1 Battery Storage;284
12.2.1.1;6.2.1.1 Lead Acid Batteries;284
12.2.1.2;6.2.1.2 Nickel-Cadmium (Ni-Cd) and Nickel-Metal Hydride(Ni-MH) Batteries;285
12.2.1.3;6.2.1.3 Lithium-Ion (Li-Ion) Batteries;286
12.2.2;6.2.2 Ultracapacitor (UC);286
12.2.3;6.2.3 Flow Batteries and Regenerative Fuel Cells (RFC);288
12.2.4;6.2.4 Fuel Cells (FC);289
12.3;6.3 Modeling of Energy Storage Devices;291
12.3.1;6.3.1 Battery Modeling;291
12.3.1.1;6.3.1.1 Ideal Model;291
12.3.1.2;6.3.1.2 Linear Model;291
12.3.1.3;6.3.1.3 Thevenin Model;291
12.3.2;6.3.2 Electrical Modeling of Fuel Cell Power Sources;293
12.3.3;6.3.3 Electrical Modeling of Photovoltaic (PV) Cells;295
12.3.4;6.3.4 Electrical Modeling of Ultracapacitors (UCs);297
12.3.4.1;6.3.4.1 Double Layer UC Model;298
12.3.4.2;6.3.4.2 Battery/UC Hybrid Model;299
12.3.5;6.3.5 Electrical Modeling of Flywheel Energy Storage Systems (FESS);301
12.4;6.4 Hybridization of Energy Storage Systems;303
12.5;6.5 Energy Management and Control Strategies;305
12.5.1;6.5.1 Battery StateMonitoring;306
12.5.2;6.5.2 Cell Balancing;308
12.6;6.6 Power Electronics for Energy Storage Systems;311
12.6.1;6.6.1 Advantages and Disadvantages of Li-Ion Battery Packs for HEV/PHEV Applications;312
12.6.2;6.6.2 Operational Characteristics of Classic and Advanced Power Electronic Cell Voltage Equalizers;313
12.6.2.1;6.6.2.1 Basic Inductive Equalizer;314
12.6.2.2;6.6.2.2 Cuk Equalizer;315
12.6.2.3;6.6.2.3 Transformer-Based Equalizer;316
12.7;6.7 Practical Case Studies;317
12.7.1;6.7.1 Hybrid Electric and Plug-in Hybrid Electric Vehicles (HEV/PHEV);317
12.7.2;6.7.2 Fuel Cells for Automotive and Renewable Energy Applications;321
12.7.2.1;6.7.2.1 Phosphoric Acid Fuel Cell (PAFC);325
12.7.2.2;6.7.2.2 Molten Carbonate Fuel Cell (MCFC);325
12.7.2.3;6.7.2.3 Solid Oxide Fuel Cell (SOFC);325
12.7.2.4;6.7.2.4 Proton Exchange Membrane Fuel Cell (PEMFC);326
12.7.3;6.7.3 Fuel-Cell-Based Hybrid DG Systems;326
12.7.3.1;6.7.3.1 Fuel Cell/Microturbine Hybrid DG System;326
12.7.3.2;6.7.3.2 Fuel Cell/Photovoltaic (PV) Hybrid DG System;327
12.8; Summary;328
12.9; References;329
13;Chapter 7: Electric Power Transmission;332
13.1;7.1 Elements of Power System;332
13.2;7.2 Generators and Transformers;333
13.3;7.3 Transmission Line;337
13.3.1;7.3.1 Aluminum Conductor Steel-Reinforced, ACSR;338
13.4;7.4 Factors That Limit Power Transfer in Transmission Line;338
13.4.1;7.4.1 Static and Dynamic Thermal Rating;338
13.4.2;7.4.2 Thermal Rating;339
13.4.3;7.4.3 Convection Heat Loss;340
13.4.4;7.4.4 Radiative Heat Loss;341
13.4.5;7.4.5 Solar Heat Gain;342
13.4.6;7.4.6 Ohmic Losses (I2R(Tc)) Heat Gain;343
13.5;7.5 Effect of Temperature on Conductor Sag or Tension;343
13.5.1;7.5.1 Conductor Temperature and Sag Relationship;343
13.6;7.6 Standard and Guidelines on Thermal Rating Calculation;347
13.7;7.7 Optimizing Power Transmission Capacity;348
13.7.1;7.7.1 Overview of Dynamic Thermal Current Rating of Transmission Line;348
13.7.2;7.7.2 Example of Dynamic Thermal Current Rating of Transmission Line;352
13.8;7.8 Overvoltages and Insulation Requirements of Transmission Lines;353
13.8.1;7.8.1 Overvoltage Phenomena by Lightning Strikes;355
13.8.2;7.8.2 Switching Surges;358
13.8.3;7.8.3 TemporaryOvervoltage;359
13.9;7.9 Methods of Controlling Overvoltages;359
13.10;7.10 Insulation Coordination;360
13.11; References;362
14;Index;364


Chapter 1 Power Electronics for Renewable Energy Sources
C.V. Nayar; S.M. Islam; H. Dehbonei; K. Tan    Department of Electrical and Computer Engineering, Curtin University of Technology, Perth, Western Australia, Australia H. Sharma    Research Institute for Sustainable Energy, Murdoch University, Perth, Western Australia, Australia Abstract
This chapter focuses on solar photovoltaic and wind power. Stand-alone PV energy system requires storage to meet the energy demand during periods of low solar irradiation and nighttime. Blocking diodes in series with PV modules are used to prevent the batteries from being discharged through the PV cells at night when there is no sun available to generate energy. Two of the main factors that have been identified as limiting criteria for the cycle life of batteries in PV power systems are incomplete charging and prolonged operation at a low state of charge. The power output of the PV array is sampled at an every definite sampling period and compared with the previous value. Voltage source inverters are usually used in stand-alone applications. They can be single phase or three phase. There are three switching techniques commonly used: square wave, quasi-square wave, and pulse width modulation. Centrifugal pumps are used for low-head applications especially if they are directly interfaced with the solar panels. Centrifugal pumps are designed for fixed-head applications and the pressure difference generated increases in relation to the speed of pump. Keywords Power electronics Renewable energy sources Photovoltaics Wind Solar Chapter Outline 1.1 Introduction   2 1.2 Power Electronics for Photovoltaic Power Systems   3 1.2.1 Basics of Photovoltaics   3 1.2.2 Types of PV Power Systems   6 1.2.3 Stand-alone PV Systems   9 1.2.3.1 Battery Charging   9 1.2.3.2 Inverters for Stand-alone PV Systems   15 1.2.3.3 Solar Water Pumping   18 1.2.4 Hybrid Energy Systems   25 1.2.4.1 Series Configuration   26 1.2.4.2 Switched Configuration   27 1.2.4.3 Parallel Configuration   28 1.2.4.4 Control of Hybrid Energy Systems   30 1.2.5 Grid-connected PV Systems   32 1.2.5.1 Inverters for Grid-connected Applications   33 1.2.5.2 Inverter Classifications   33 1.2.5.3 Inverter Types   34 1.2.5.4 Power Control through PV Inverters   40 1.2.5.5 System Configurations   45 1.2.5.6 Grid-compatible Inverters Characteristics   47 1.3 Power Electronics for Wind Power Systems   49 1.3.1 Basics of Wind Power   51 1.3.1.1 Types of Wind Turbines   53 1.3.1.2 Types of Wind Generators   54 1.3.2 Types of Wind Power Systems   58 1.3.3 Stand-alone Wind Power Systems   58 1.3.3.1 Battery Charging with Stand-alone Wind Energy System   58 1.3.3.2 Wind Turbine Charge Controller   58 1.3.4 Wind-diesel Hybrid Systems   59 1.3.5 Grid-connected Wind Energy Systems   60 1.3.5.1 Soft Starters for Induction Generators   61 1.3.6 Control of Wind Turbines   62 1.3.6.1 Fixed Speed Wind Turbines   62 1.3.6.2 Variable Speed Wind Turbines   65 1.3.6.3 Discretely Variable Speed Systems   66 1.3.6.4 Continuously Variable Speed Systems   67 1.3.6.5 Types of Generator Options for Variable Speed Wind Turbines Using Power Electronics   70 1.3.6.6 Isolated Grid Supply System with Multiple Wind Turbines   73 1.3.6.7 Power Electronics Technology Development   74 References   75 1.1 Introduction
The Kyoto agreement on global reduction of greenhouse gas emissions has prompted renewed interest in renewable energy systems worldwide. Many renewable energy technologies today are well developed, reliable, and cost competitive with the conventional fuel generators. The cost of renewable energy technologies is on a falling trend and is expected to fall further as demand and production increases. There are many renewable energy sources (RES) such as biomass, solar, wind, mini hydro and tidal power. However, solar and wind energy systems make use of advanced power electronics technologies and, therefore the focus in this chapter will be on solar photovoltaic and wind power. One of the advantages offered by (RES) is their potential to provide sustainable electricity in areas not served by the conventional power grid. The growing market for renewable energy technologies has resulted in a rapid growth in the need of power electronics. Most of the renewable energy technologies produce DC power and hence power electronics and control equipment are required to convert the DC into AC power. Inverters are used to convert DC to AC. There are two types of inverters: (a) stand-alone or (b) grid-connected. Both types have several similarities but are different in terms of control functions. A stand-alone inverter is used in off-grid applications with battery storage. With back-up diesel generators (such as photovoltaic (PV)/diesel/hybrid power systems), the inverters may have additional control functions such as operating in parallel with diesel generators and bi-directional operation (battery charging and inverting). Grid interactive inverters must follow the voltage and frequency characteristics of the utility generated power presented on the distribution line. For both types of inverters, the conversion efficiency is a very important consideration. Details of standalone and grid-connected inverters for PV and wind applications are discussed in this chapter. Section 1.2 covers stand-alone PV system applications such as battery charging and water pumping for remote areas. This section also discusses power electronic converters suitable for PV-diesel hybrid systems and grid-connected PV for rooftop and large-scale applications. Of all the renewable energy options, the wind turbine technology is maturing very fast. A marked rise in installed wind power capacity has been noticed worldwide in the last decade. Per unit generation cost of wind power is now quite comparable with the conventional generation. Wind turbine generators are used in stand-alone battery charging applications, in combination with fossil fuel generators as part of hybrid systems and as grid-connected systems. As a result of advancements in blade design, generators, power electronics, and control systems, it has been possible to increase dramatically the availability of large-scale wind power. Many wind generators now incorporate speed control mechanisms like blade pitch control or use converters/inverters to regulate power output from variable speed wind turbines. In Section 1.3, electrical and power conditioning aspects of wind energy conversion systems were included. 1.2 Power electronics for photovoltaic power systems
1.2.1 Basics of photovoltaics
The density of power radiated from the sun (referred as “solar energy constant”) at the outer atmosphere is 1.373 kW/m2. Part of this energy is absorbed and scattered by the earth's atmosphere. The final incident sunlight on earth's surface has a peak density of 1 kW/m2 at noon in the tropics. The technology of photovoltaics (PV) is essentially concerned with the conversion of this energy into usable electrical form. Basic element of a PV system is the solar cell. Solar cells can convert the energy of sunlight directly into electricity. Consumer appliances used to...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.