Andò / Baldini / Di Natale | Sensors | E-Book | sack.de
E-Book

E-Book, Englisch, Band 539, 620 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

Andò / Baldini / Di Natale Sensors

Proceedings of the Fourth National Conference on Sensors, February 21-23, 2018, Catania, Italy

E-Book, Englisch, Band 539, 620 Seiten, eBook

Reihe: Lecture Notes in Electrical Engineering

ISBN: 978-3-030-04324-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)



This book gathers the best papers presented at the Fourth Italian National Conference on Sensors, held in Catania, Italy, from 21 to 23 February 2018. The book represents an invaluable and up-to-the-minute tool, providing an essential overview of recent findings, strategies and new directions in the area of sensor research. Further, it addresses various aspects based on the development of new chemical, physical or biological sensors, assembling and characterization, signal treatment and data handling. Lastly, the book applies electrochemical, optical and other detection strategies to relevant issues in the food and clinical environmental areas, as well as industry-oriented applications.
Andò / Baldini / Di Natale Sensors jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Chemical Sensors;16
4;Low Temperature NO2 Sensor Based on YCoO3 and TiO2 Nanoparticle Composites;17
4.1;1 Introduction;17
4.2;2 Sensors and Characterization;18
4.2.1;2.1 Sensor Preparation;18
4.2.2;2.2 Sensor Characterization;19
4.3;3 Conclusions;21
4.4;References;24
5;Effect of Humidity on the Hydrogen Sensing in Graphene Based Devices;25
5.1;1 Introduction;25
5.1.1;1.1 Material Preparation;26
5.1.2;1.2 Material Characterization;26
5.1.3;1.3 Sensing Characterization;26
5.2;2 Conclusions;29
5.3;References;30
6;A Networked Wearable Device for Chemical Multisensing;31
6.1;1 Introduction;32
6.2;2 The Environmental Sensors;32
6.3;3 Test Platform with NO2 Gas Sensors;33
6.4;4 Sensing Material Deposition on UCL Microarrays;36
6.5;5 Conclusions;36
6.6;References;38
7;High Performance VOCs Sensor Based on ?-Fe2O3/Al-ZnO Nanocomposites;39
7.1;1 Introduction;39
7.2;2 Experimental;40
7.2.1;2.1 Samples Preparation;40
7.2.2;2.2 Morphological, Microstructural and Sensing Properties;41
7.3;3 Results and Discussion;41
7.3.1;3.1 Metal Oxides Characterization;41
7.3.2;3.2 Acetone Sensing Tests;42
7.4;4 Conclusions;44
7.5;References;44
8;Electrochemical Sensor Based on Molybdenum Oxide Nanoparticles for Detection of Dopamine;45
8.1;1 Introduction;45
8.2;2 Materials and Methods;47
8.3;3 Results and Discussion;48
8.4;4 Summary;51
8.5;References;52
9;Sensing Properties of Indium, Tin and Zinc Oxides for Hexanal Detection;53
9.1;1 Introduction;53
9.2;2 Experimental;54
9.2.1;2.1 Samples Preparation and Characterization;54
9.2.2;2.2 Sensor Preparation and Testing;54
9.3;3 Results and Discussion;55
9.3.1;3.1 Metal Oxides Characterization;55
9.3.2;3.2 Hexanal Detection Measurements;56
9.4;4 Conclusions;58
9.5;References;58
10;On-Glass Integration of Thin Film Devices for Monitoring of Cell Bioluminescence;59
10.1;1 Introduction;59
10.2;2 System Structure and Operation;60
10.2.1;2.1 Heater and a-Si:H Sensor Design;62
10.3;3 Fabrication and Characterization;62
10.4;4 Conclusions;64
10.5;References;65
11;Yeast-DMFC Device Using Glucose as Fuel: Analytical and Energetic Applications. Preliminary Results;66
11.1;1 Introduction;66
11.2;2 Materials and Methods;67
11.3;3 Results and Discussion;68
11.4;4 Conclusions;70
11.5;References;71
12;YCoO3 Resistive Gas Sensors for the Detection of NO2 in ‘Resistance Controlled Mode’;73
12.1;1 Introduction;73
12.2;2 Measurement Technique and Measurement System;74
12.3;3 Experimental Results;76
12.4;4 Conclusions;78
12.5;References;80
13;Monitoring Shelf Life of Carrots with a Peptides Based Electronic Nose;81
13.1;1 Introduction;81
13.2;2 Materials and Methods;82
13.3;3 Results and Discussion;83
13.4;4 Conclusions;85
13.5;References;85
14;An Innovative Optical Chem-Sensor Based on a Silicon Photomultipliers for the Sulfide Monitoring;87
14.1;1 Introduction;88
14.2;2 Materials and Methods;89
14.2.1;2.1 Chemicals;89
14.2.2;2.2 Silicon Photomultipliers;89
14.2.3;2.3 Sulfide Water Samples Collection;90
14.3;3 Results and Discussion;90
14.4;4 Conclusions;92
14.5;References;93
15;Samarium Oxide as a Novel Sensing Material for Acetone and Ethanol;94
15.1;1 Introduction;94
15.2;2 Experimental;95
15.3;3 Results and Discussion;95
15.4;4 Conclusion;97
15.5;References;98
16;Crowdfunding for Increased Awareness Crowd-Sensing: A Technical Account;99
16.1;1 Introduction;99
16.2;2 Crowdfunding Campaign;101
16.3;3 Monica 2.0 Multi-sensor Device;102
16.3.1;3.1 Sensor Node;102
16.3.2;3.2 Data Acquisition System;103
16.3.3;3.3 Back-End;103
16.3.4;3.4 Front-End;105
16.3.5;3.5 Calibration Procedures;107
16.4;4 Crowd Sensing Campaign;108
16.5;5 Conclusions;110
16.6;References;110
17;Biosensors;112
18;Nickel Based Biosensor for Biomolecules Recognition;113
18.1;1 Introduction;113
18.2;2 Materials and Methods;114
18.2.1;2.1 Chemicals;114
18.2.2;2.2 Electrochemical Measurements;114
18.2.3;2.3 Saliva Sample and Pre-treatment;114
18.3;3 Results and Discussion;115
18.4;4 Conclusions;116
18.5;References;116
19;Electrochemical DNA-Based Sensor for Organophosphorus Pesticides Detection;118
19.1;1 Introduction;118
19.2;2 Materials and Methods;119
19.3;3 Results;120
19.4;4 Conclusions;122
19.5;References;122
20;A Novel Lab-on-Disk System for Pathogen Nucleic Acids Analysis in Infectious Diseases;123
20.1;1 Introduction;123
20.2;2 Materials and Methods;126
20.2.1;2.1 Chemicals and Reagents;126
20.2.2;2.2 Extraction Experiments;126
20.2.3;2.3 Real Time Amplification on the Chip;126
20.3;3 Results and Discussions;127
20.3.1;3.1 Module for DNA Extraction;127
20.3.2;3.2 Module for DNA Detection;127
20.4;4 Conclusions;128
20.5;References;129
21;Diamond-Based Multi Electrode Arrays for Monitoring Neurotransmitter Release;131
21.1;1 Introduction;132
21.2;2 µG-SCD MEA Microfabrication;132
21.3;3 Electrical Characterizations;135
21.4;4 Measurements of Quantal Dopamine Release;137
21.5;5 Conclusion;138
21.6;References;138
22;Ultrasensitive Non-enzymatic Electrochemical Glucose Sensor Based on NiO/CNT Composite;141
22.1;1 Introduction;141
22.2;2 Experimental;142
22.2.1;2.1 Preparation of NiO/SCCNT Composites;142
22.2.2;2.2 Electrode Preparation;142
22.3;3 Result and Discussion;143
22.3.1;3.1 TEM;143
22.3.2;3.2 Electrochemical Behavior of Glucose at CNT/NiO Modified Electrode;143
22.4;4 Conclusion;145
22.5;References;146
23;A Silicon-Based Biosensor for Bacterial Pathogens Detection;147
23.1;1 Introduction;147
23.2;2 Materials and Methods;148
23.2.1;2.1 Chemicals and Biological Reagents;148
23.2.2;2.2 Biosensor Description;148
23.3;3 Results and Discussion;149
23.3.1;3.1 Sample Processing and Detection;149
23.3.2;3.2 Real-Time PCR Experiments;149
23.4;4 Conclusion;150
23.5;References;151
24;M13 Bacteriophages as Bioreceptors in Biosensor Device;152
24.1;1 Introduction;153
24.2;2 Materials and Methods;153
24.2.1;2.1 Bacteriophages;153
24.2.2;2.2 Functionalization of Magnetic and Latex Beads;154
24.2.3;2.3 Binding of Phage to Polymeric Surface and Capture of Bacteria Target;154
24.3;3 Results and Discussion;155
24.4;4 Conclusions;159
24.5;References;159
25;One-Step Functionalization of Silicon Nanoparticles with Phage Probes to Identify Pathogenic Bacteria;161
25.1;1 Introduction;162
25.2;2 Results and Discussion;163
25.3;3 Conclusions;166
25.4;References;166
26;FITC-Labelled Clone from Phage Display for Direct Detection of Leukemia Cells in Blood;168
26.1;1 Introduction;169
26.2;2 Materials and Methods;170
26.2.1;2.1 Bacteriophage;170
26.2.2;2.2 Phage Labelling with FITC;170
26.2.3;2.3 Sample Preparation for Fluorescence Imaging;171
26.3;3 Results and Discussions;171
26.4;4 Conclusions;174
26.5;References;175
27;Organised Colloidal Metal Nanoparticles for LSPR Refractive Index Transducers;176
27.1;1 Introduction;176
27.2;2 Experimental;177
27.2.1;2.1 Preparation of Gold Nanoparticles;177
27.2.2;2.2 Deposition of Colloidal Gold Particles on Silanised Glass Substrate;178
27.2.3;2.3 Characterization Techniques;178
27.3;3 Results;179
27.4;4 Conclusions;182
27.5;References;182
28;Human Organ-on-a-Chip: Around the Intestine Bends;183
28.1;1 Introduction;184
28.2;2 Materials and Methods;186
28.3;3 Results and Discussions;187
28.4;References;189
29;Portable Optoelectronic System for Monitoring Enzymatic Chemiluminescent Reaction;191
29.1;1 Introduction;192
29.2;2 System Structure and Operation;192
29.3;3 System Fabrication;193
29.4;4 Test of the System;195
29.5;5 Conclusions;196
29.6;References;196
30;A Novel Paper-Based Biosensor for Urinary Phenylalanine Measurement for PKU Therapy Monitoring;197
30.1;1 Introduction;197
30.2;2 Materials and Methods;198
30.2.1;2.1 Chemicals;198
30.2.2;2.2 Instrumentation;198
30.3;3 Results and Discussion;199
30.3.1;3.1 Biosensor;199
30.3.2;3.2 Phenylalanine Detection Strategy;199
30.3.3;3.3 Detection Strategy Optimization and Chromatic-Scale;200
30.3.4;3.4 Phenylalanine Detection on Human Sample;201
30.4;4 Conclusion;202
30.5;References;202
31;Physical Sensors;203
32;Magnetoencephalography System Based on Quantum Magnetic Sensors for Clinical Applications;204
32.1;1 Introduction;205
32.2;2 Magnetic Sensors;205
32.3;3 Magnetoencephalography System;207
32.4;4 MEG Acquisition and Test Measurements;208
32.5;5 Conclusions;209
32.6;References;210
33;Calibration System for Multi-sensor Acoustical Systems;211
33.1;1 Introduction;212
33.2;2 Problem Statement;212
33.2.1;2.1 Acoustic Antenna Calibration;213
33.2.2;2.2 Experiment Setup;214
33.3;3 Experiment Result;216
33.4;4 Conclusions;220
33.5;References;220
34;Pyroelectric Sensor for Characterization of Biological Cells;222
34.1;1 Introduction;222
34.2;2 Matherials and Methods;223
34.3;3 Results;224
34.4;4 Conclusion;226
34.5;References;226
35;Characterization of a TMR Sensor for EC-NDT Applications;228
35.1;1 Introduction;229
35.2;2 TMR Sensor Performance Evaluation;230
35.3;3 Uncertainty Evaluation;231
35.4;4 Conclusions;234
35.5;References;234
36;Thermal, Mechanical and Electrical Investigation of Elastomer-Carbon Black Nanocomposite Piezoresistivity;236
36.1;1 Introduction;237
36.2;2 The Composite Synthesis and the Thermal Characterization;237
36.2.1;2.1 Thermogravimetric Analysis (TGA) of the Obtained Composites;239
36.2.2;2.2 Mechanical Dynamic Analysis (DMA) of the Obtained Composites;240
36.3;3 Investigation of the Composite Piezoresistivity;240
36.3.1;3.1 The Measuring System for Piezoresistivity Investigation;241
36.3.2;3.2 The Experimental Results;242
36.4;4 The Viscoelastic Characterization of the Composites;244
36.4.1;4.1 Description of the Testing Machine;244
36.4.2;4.2 The Testing Procedure Acquisition;246
36.4.3;4.3 Results of the Relaxation Phase;248
36.5;References;249
37;Optical Sensors;250
38;Polishing Process Analysis for Surface Plasmon Resonance Sensors in D-Shaped Plastic Optical Fibers;251
38.1;1 Introduction;251
38.2;2 Optical Sensor Configurations;252
38.3;3 Experimental Results;253
38.4;4 Conclusions;254
38.5;References;255
39;A Molecularly Imprinted Polymer on a Novel Surface Plasmon Resonance Sensor;256
39.1;1 Introduction;256
39.2;2 Plasmonic Platform;257
39.3;3 Experimental Results;258
39.4;4 Conclusions;259
39.5;References;259
40;Design of a Label-Free Multiplexed Biosensing Platform Based on an Ultracompact Plasmonic Resonant Cavity;260
40.1;1 Introduction;260
40.2;2 Design;261
40.3;3 Conclusions;264
40.4;References;264
41;A Novel Intensity-Based Sensor Platform for Refractive Index Sensing;265
41.1;1 Introduction;265
41.2;2 Optical Sensor System;266
41.3;3 Experimental Results;266
41.4;4 Conclusions;268
41.5;References;268
42;An Optical Sensing System for Atmospheric Particulate Matter;270
42.1;1 Introduction;270
42.2;2 Proposed Architecture;272
42.3;3 Results;275
42.4;4 Conclusions;276
42.5;References;276
43;Performances Evaluation of the Optical Techniques Developed and Used to Map the Velocities Vectors of Radioactive Dust;278
43.1;1 Introduction;278
43.2;2 Materials and Methods;279
43.2.1;2.1 STARDUST-Upgrade;279
43.2.2;2.2 Optical Measurement of Velocity;280
43.3;3 Results and Discussion;283
43.3.1;3.1 Fluid-Dynamics Characterisation of the Experiments;283
43.3.2;3.2 Algorithm Performance Analysis;283
43.3.3;3.3 Result Discussion;286
43.4;4 Conclusions;286
43.5;References;288
44;Printed and Flexible Sensors;289
45;Low Cost Inkjet Printed Sensors: From Physical to Chemical Sensors;290
45.1;1 Introduction;290
45.2;2 State of the Art;292
45.3;3 Inkjet Printed Sensors Application Examples;294
45.3.1;3.1 CO2 Gas Sensors;294
45.3.2;3.2 Accelerometer;297
45.4;4 Conclusions;299
45.5;References;300
46;DNA-Based Biosensor on Flexible Nylon Substrate by Dip-Pen Lithography for Topoisomerase Detection;302
46.1;1 Introduction;303
46.1.1;1.1 Flexible Devices;303
46.1.2;1.2 Printed Biosensor for Topoisomerase Detection;303
46.2;2 Experimental Aspects;304
46.2.1;2.1 Materials;304
46.2.2;2.2 Fabrication Protocol;304
46.2.3;2.3 Biosensor Assembly;305
46.3;3 Conclusions and Future Perspectives;308
46.4;References;309
47;Aerosol Jet Printed Sensors for Protein Detection: A Preliminary Study;310
47.1;1 Introduction;310
47.1.1;1.1 AJP: Introduction and Functioning Principle;311
47.2;2 Materials and Methods;312
47.2.1;2.1 Sensors Design and Fabrication;312
47.2.2;2.2 Sensors Testing;314
47.3;3 Results;316
47.3.1;3.1 Geometrical Analysis;316
47.3.2;3.2 Electrical Analysis;316
47.3.3;3.3 Fluorescence Imaging;317
47.3.4;3.4 Protein Quantification;318
47.4;4 Conclusions;318
47.5;References;319
48;Novel Coplanar Capacitive Force Sensor for Biomedical Applications: A Preliminary Study;321
48.1;1 Introduction;322
48.1.1;1.1 State of the Art;322
48.1.2;1.2 Coplanar Capacitors;322
48.2;2 Sensor Fabrication and Preliminary Tests;324
48.2.1;2.1 Sensor Fabrication Process;324
48.2.2;2.2 Sensor Preliminary Test;325
48.3;3 Conclusions;327
48.4;References;327
49;Graphene-Like Based-Chemiresistors Inkjet-Printed onto Paper Substrate;329
49.1;1 Introduction;329
49.2;2 Experimental;330
49.3;3 Results and Discussion;331
49.4;4 Conclusion;334
49.5;References;335
50;Carbon Black as Electrode Modifier in Prussian Blue Electrodeposition for H2O2 Sensing;336
50.1;1 Introduction;336
50.2;2 Materials and Methods;337
50.2.1;2.1 Materials;337
50.2.2;2.2 Instrumentation;337
50.2.3;2.3 Preparation of SPE-PB and SPE-CB-PB Electrodes;337
50.3;3 Results and Discussion;338
50.4;4 Conclusions;340
50.5;References;340
51;Sensing Systems;342
52;PPG/ECG Multisite Combo System Based on SiPM Technology;343
52.1;1 Introduction;344
52.2;2 Experimental Setup;346
52.3;3 Data Analysis;347
52.4;4 Conclusions;349
52.5;References;350
53;A Small Footprint, Low Power, and Light Weight Sensor Node and Dedicated Processing for Modal Analysis;351
53.1;1 Introduction;351
53.2;2 Sensor Node;353
53.3;3 Modal Estimation;354
53.3.1;3.1 Natural Frequency Estimation;354
53.3.2;3.2 Modal Shapes Reconstruction;356
53.4;4 Conclusions;359
53.5;References;360
54;IEEE 21451-001 Signal Treatment Applied to Smart Transducers;361
54.1;1 Introduction;361
54.2;2 Standard Structure;362
54.2.1;2.1 Sampling of Sensor Signals;362
54.2.2;2.2 Standard Proposed Algorithms;364
54.2.3;2.3 Second Layer Algorithms;364
54.3;3 Conclusions;365
54.4;References;366
55;Accuracy and Metrological Characteristics of Wearable Devices: A Systematic Review;367
55.1;1 Introduction;367
55.2;2 Materials and Methods;368
55.3;3 Results;369
55.3.1;3.1 Wrist-Worn Monitors;369
55.3.2;3.2 Chest-Strap Devices;373
55.4;4 Discussion and Conclusion;374
55.5;References;375
56;Short Range Positioning Using Ultrasound Techniques;378
56.1;1 Introduction;378
56.2;2 The Positioning System;379
56.2.1;2.1 System Architecture;379
56.2.2;2.2 System Operation;379
56.3;3 Experimental Results;381
56.3.1;3.1 Experimental Setup;381
56.3.2;3.2 Experimental Results;384
56.4;4 Conclusions;387
56.5;References;387
57;Estimating the Outdoor PM10 Concentration Through Wireless Sensor Network for Smart Metering;388
57.1;1 Introduction;388
57.2;2 The System Under Test;389
57.3;3 The Feasibility Study;391
57.4;References;392
58;Machine Learning Techniques to Select a Reduced and Optimal Set of Sensors for the Design of Ad Hoc Sensory Systems;394
58.1;1 Introduction;394
58.2;2 Materials and Methods;395
58.2.1;2.1 Data Pre-processing;396
58.2.2;2.2 Feature Selection and Classification Algorithms;397
58.3;3 Results;398
58.4;4 Discussion;401
58.5;5 Conclusions;403
58.6;References;403
59;Multi-sensor Platform for Automatic Assessment of Physical Activity of Older Adults;406
59.1;1 Introduction;406
59.2;2 Materials and Methods;408
59.2.1;2.1 Platform Overview;408
59.2.2;2.2 Ambient Sensor and Relative Framework for Activity Recognition Task;409
59.2.3;2.3 Wearable Sensor and Relative Framework for Activity Recognition Task;410
59.2.4;2.4 Methodology for Automatic Assessment of Physical Activity;412
59.3;3 Results and Discussion;413
59.4;4 Conclusion;415
59.5;References;415
60;Failure Modes and Mechanisms of Sensors Used in Oil&Gas Applications;417
60.1;1 Introduction;417
60.2;2 Sensors in Oil&Gas Application;419
60.3;3 Failure Modes and Failure Mechanism of Sensors;420
60.4;4 Diagnostic in Oil&Gas Safety Sensors;422
60.5;5 Conclusions;423
60.6;References;423
61;Lab-on-Disk Platform for KRAS Mutation Testing;425
61.1;1 Introduction;425
61.2;2 Materials and Methods;427
61.3;3 Results;429
61.4;4 Discussion;430
61.5;5 Conclusion;430
61.6;References;431
62;Study Toward the Integration of a System for Bacterial Growth Monitoring in an Automated Specimen Processing Platform;433
62.1;1 Introduction;433
62.2;2 Materials and Methods;435
62.2.1;2.1 The Measuring System;435
62.2.2;2.2 Study Setup and Protocol;436
62.3;3 Preliminary Results;438
62.3.1;3.1 Double Layer Capacitance CDL;438
62.3.2;3.2 Charge Transfer Resistance RCT;439
62.3.3;3.3 Medium Resistance RM;439
62.4;4 Conclusions;441
62.5;References;442
63;A Virtual ANN-Based Sensor for IFD in Two-Wheeled Vehicle;443
63.1;1 Introduction;443
63.2;2 The Two-Wheeled Vehicle Under Test;445
63.3;3 The Virtual Sensor;446
63.4;4 The IFD Scheme;447
63.5;5 Conclusions;450
63.6;References;450
64;A Smart Breath Analyzer for Monitoring Home Mechanical Ventilated Patients;452
64.1;1 Introduction;453
64.2;2 Smart Breath Analyzer;453
64.2.1;2.1 Rationale;453
64.2.2;2.2 Architecture;454
64.2.3;2.3 Preliminary Test;456
64.3;3 Conclusions;457
64.4;References;457
65;A Nonlinear Pattern Recognition Pipeline for PPG/ECG Medical Assessments;459
65.1;1 Introduction;459
65.2;2 Materials and Methods;461
65.3;3 Results and Discussion;461
65.4;4 Conclusion;464
65.5;References;466
66;Electronic System for Structural and Environmental Building Monitoring;467
66.1;1 Motivation;467
66.2;2 Proposed Monitoring System;468
66.3;3 Test Case: Example of Application;469
66.4;References;473
67;Closed-Loop Temperature Control CMOS Integrated Circuit for Diagnostics and Self-calibration of Capacitive Humidity Sensors;475
67.1;1 Introduction;475
67.2;2 Temperature Control System Circuit;476
67.3;3 Experimental Measurements;477
67.4;4 Conclusions;479
67.5;References;481
68;An UAV Mounted Intelligent Monitoring System for Impromptu Air Quality Assessments;482
68.1;1 Introduction;483
68.2;2 Methodology: The Tethered Air Quality Drone Architecture;483
68.2.1;2.1 Payload Part 1: MONICA Multisensor Node;484
68.2.2;2.2 Payload Part 2: IoT Processing Unit;485
68.2.3;2.3 UAV Platform;486
68.3;3 Experimental Results: First Flight Session;487
68.4;4 Conclusions;490
68.5;References;490
69;Sensors Applications;492
70;Fluxgate Magnetometer and Performance for Measuring Iron Compounds;493
70.1;1 Introduction;494
70.2;2 Measurement Method and Experimental Setup;494
70.3;3 Experimental Results;497
70.4;4 Conclusion;500
70.5;References;501
71;Micro Doppler Radar and Depth Sensor Fusion for Human Activity Monitoring in AAL;502
71.1;1 Introduction;502
71.2;2 Materials and Methods;503
71.2.1;2.1 Sensors and Data Acquisition Setups;503
71.2.2;2.2 Test Protocol and Dataset Collection;505
71.2.3;2.3 Fall Detection Algorithm;507
71.3;3 Experimental Results;509
71.4;4 Conclusion;510
71.5;References;511
72;Characterization of Human Semen by GC-MS and VOC Sensor: An Unexplored Approach to the Study on Infertility;512
72.1;1 Introduction;513
72.2;2 Materials and Methods;514
72.3;3 Results;514
72.4;4 Discussion;515
72.5;5 Conclusions;518
72.6;References;519
73;A Novel Technique to Characterize Conformational State of the Proteins: p53 Analysis;520
73.1;1 Introduction;520
73.2;2 Methodology;522
73.2.1;2.1 Sample Preparation;522
73.2.2;2.2 Spectrophotometer Testing;522
73.3;3 Result;523
73.4;4 Discussions;524
73.5;5 Conclusion;526
73.6;References;526
74;Electrical Energy Harvesting from Pot Plants;528
74.1;1 Plant Microbial Fuel Cell;528
74.2;2 Description of the System and Preliminary Measurements;530
74.3;3 Electronic Harvesting Circuit and Improved Measurements;531
74.4;4 Conclusions;533
74.5;References;533
75;Preliminary Study on Wearable System for Multiple Finger Tracking;534
75.1;1 Introduction;534
75.2;2 Description of the System;535
75.3;3 Experimental Study;538
75.4;4 Conclusions;540
75.5;References;541
76;Giraff Meets KOaLa to Better Reason on Sensor Networks;542
76.1;1 Introduction;543
76.2;2 Sensor-Based Applications and Knowledge Extraction;544
76.2.1;2.1 The GiraffPlus Research Project;545
76.2.2;2.2 Data Needs Semantics;545
76.3;3 KOaLa: Knowledge-Based Continuous Loop;546
76.3.1;3.1 A Context-Based Ontological Approach;547
76.3.2;3.2 Linking Knowledge Processing and Planning;549
76.4;4 KOaLa and Giraff Working Together;550
76.5;5 Final Remarks and Future Developments;551
76.6;References;551
77;Smart Insole for Diabetic Foot Monitoring;553
77.1;1 Introduction;553
77.2;2 Smart Insole System;555
77.3;3 Results;557
77.4;4 Conclusion;558
77.5;References;558
78;Identification of Users’ Well-Being Related to External Stimuli: A Preliminary Investigation;560
78.1;1 Introduction;560
78.2;2 Materials and Methods;561
78.3;3 Experimental Setup;562
78.3.1;3.1 Participants and Trials;563
78.3.2;3.2 Data Processing and Features Extraction;564
78.4;4 Analysis of Results;566
78.5;5 Conclusions;568
78.6;References;569
79;Smart Transducers for Energy Scavenging and Sensing in Vibrating Environments;572
79.1;1 Introduction;572
79.2;2 Theory of Operation;574
79.3;3 Experimental Setup;575
79.4;4 Results and Discussion;575
79.5;5 Conclusion;578
79.6;References;579
80;RMSHI Solutions for Electromagnetic Transducers from Environmental Vibration;580
80.1;1 Introduction;581
80.2;2 Working Principle;582
80.3;3 Experimental Setup;583
80.4;4 Results and Discussion;583
80.5;5 Conclusion;587
80.6;References;587
81;Characterization of Sensorized Porous 3D Gelatin/Chitosan Scaffolds Via Bio-impedance Spectroscopy;589
81.1;1 Introduction;590
81.2;2 Materials and Methods;591
81.2.1;2.1 Scaffold Preparation;591
81.2.2;2.2 Experimental Setup and Measurement Protocols for Bio-impedance Spectroscopy;592
81.3;3 Result and Discussion;592
81.3.1;3.1 Bio-impedance Measurement;592
81.3.2;3.2 Electrical Conductivity Analysis;593
81.4;4 Conclusion;594
81.5;References;595
82;Fast Multi-parametric Method for Mechanical Properties Estimation of Clamped—Clamped Perforated Membranes;598
82.1;1 Introduction;599
82.2;2 Fabrication and Mechanical Characterization;600
82.2.1;2.1 Fabrication of CCFF Perforated Membranes;600
82.2.2;2.2 Mechanical Properties of the Structural Tri-layer;600
82.3;3 Deflection Model of a Perforated Membrane;601
82.4;4 Measurements and Results;602
82.5;5 Conclusions;604
82.6;References;605
83;Improvement of the Frequency Behavior of an EC-NDT Inspection System;607
83.1;1 Introduction;608
83.2;2 Some Theoretical Notes to the Resonance Condition in an EC-NDT Probe;608
83.3;3 Some Theoretical Notes on the Double Resonant Circuit;611
83.4;4 First Experimental Results;613
83.5;5 Conclusion;615
83.6;References;615
84;Author Index;617


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.