Hall / Allen / Ishihara | Science of Synthesis Knowledge Updates 2011 Vol. 4 | E-Book | sack.de
E-Book

E-Book, Englisch, 566 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

Hall / Allen / Ishihara Science of Synthesis Knowledge Updates 2011 Vol. 4

E-Book, Englisch, 566 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

ISBN: 978-3-13-178771-2
Verlag: Thieme
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)



The Science of Synthesis Editorial Board,together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

Content of this volume: Organometallic Complexes of Scandium, Yttrium, and the Lanthanides, Metallocene Complexes with Bis(trimethylsilyl)acetylene, Titanocene-Bis(trimethylsilyl)acetylene Complexes, Zirconocene-Bis(trimethylsilyl)acetylene Complexes, Hafnocene Bis(trimethylsilyl)acetylene Complexes, Boron Compounds, Aluminum Alkoxides and Phenoxides, Aluminum Amides, Dearomatization Reactions Using Organolithiums, Carbolithiation of Carbon-Carbon Multiple Bonds, Pyrazines, Six-Membered Hetarenes with More than Three Heteroatoms, Nitriles, Oximes.
Hall / Allen / Ishihara Science of Synthesis Knowledge Updates 2011 Vol. 4 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


1;Science of Synthesis: Knowledge Updates 2011/4;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;16
1.6;Table of Contents;18
1.7;Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···);32
1.7.1;2.12 Product Class 12: Organometallic Complexes of Scandium, Yttrium, and the Lanthanides;32
1.7.1.1;2.12.15 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides;32
1.7.1.1.1;2.12.15.1 Lanthanide-Catalyzed Mukaiyama Aldol Reactions;32
1.7.1.1.1.1;2.12.15.1.1 Method 1: Non-enantioselective Formation of ß-Hydroxycarbonyls;32
1.7.1.1.1.2;2.12.15.1.2 Method 2: Enantioselective Formation of ß-Hydroxycarbonyls;35
1.7.1.1.1.2.1;2.12.15.1.2.1 Variation 1: In an Organic Solvent;35
1.7.1.1.1.2.2;2.12.15.1.2.2 Variation 2: In an Aqueous Solvent;38
1.7.2;2.14 Product Class 14: Group 4 Metallocene Complexes with Bis(trimethylsilyl)acetylene;42
1.7.2.1;2.14.1 Product Subclass 1: Titanocene–Bis(trimethylsilyl)acetylene Complexes;44
1.7.2.1.1;Synthesis of Product Subclass 1;44
1.7.2.1.1.1;2.14.1.1 Method 1: Reduction of a Dichlorobis(.5-cyclopentadienyl)titanium Derivative in the Presence of Bis(trimethylsilyl)acetylene;44
1.7.2.1.1.1.1;2.14.1.1.1 Variation 1: Reduction and Intramolecular Dehydrocoupling of Cyclopentadienyl Fragments;45
1.7.2.1.1.2;2.14.1.2 Method 2: Methane Elimination from Bis(.5-cyclopentadienyl)dimethyltitanium(IV);46
1.7.2.1.2;Applications of Product Subclass 1 in Organometallic Reactions;46
1.7.2.1.2.1;2.14.1.3 Method 3: Reactions with Brønsted Acids;46
1.7.2.1.2.1.1;2.14.1.3.1 Variation 1: Reaction with Methanol;48
1.7.2.1.2.2;2.14.1.4 Method 4: Titanocene–Bis(trimethylsilyl)acetylene Complexes in the Formation of Metallacycles;49
1.7.2.1.2.2.1;2.14.1.4.1 Variation 1: Formation of Five-Membered Group 4 Metallacycles;49
1.7.2.1.2.2.2;2.14.1.4.2 Variation 2: Formation of Six-Membered Metallacycles;50
1.7.2.1.2.2.3;2.14.1.4.3 Variation 3: Formation of Three-Membered Aza-metallacycles;51
1.7.2.1.2.2.4;2.14.1.4.4 Variation 4: Formation of Four- and Five-Membered Aza-metallacycles;53
1.7.2.1.2.2.5;2.14.1.4.5 Variation 5: Coupling Reactions of Dichlorophosphines and the Formation of Phospha-metallacycles;55
1.7.2.1.2.2.6;2.14.1.4.6 Variation 6: Formation of Stiba-metallacycles;56
1.7.2.1.2.2.7;2.14.1.4.7 Variation 7: Formation of Four-Membered Thia-metallacycles;58
1.7.2.1.2.2.8;2.14.1.4.8 Variation 8: Formation of Four-Membered Selena-metallacycles;59
1.7.2.1.2.3;2.14.1.5 Method 5: Titanocene–Bis(trimethylsilyl)acetylene Complexes in Supramolecular Chemistry;59
1.7.2.1.2.3.1;2.14.1.5.1 Variation 1: Dehydrogenative Coupling;62
1.7.2.1.2.4;2.14.1.6 Method 6: Titanocene–Bis(trimethylsilyl)acetylene Complexes in Bond-Activation Reactions;63
1.7.2.1.2.4.1;2.14.1.6.1 Variation 1: Dinitrogen Activation;63
1.7.2.1.2.4.2;2.14.1.6.2 Variation 2: C--F Bond Activation;64
1.7.2.1.2.4.3;2.14.1.6.3 Variation 3: C--C Single-Bond Metathesis;65
1.7.2.1.2.5;2.14.1.7 Method 7: Catalytic Hydroamination of Alkynes;66
1.7.2.1.2.6;2.14.1.8 Method 8: Catalytic Dehydrogenation of Dimethylamine Borane;67
1.7.2.1.2.7;2.14.1.9 Method 9: Oxidation Reactions;67
1.7.2.1.2.8;2.14.1.10 Method 10: Reactions with Alkynes: Alkyne Substitution Reactions;68
1.7.2.1.2.8.1;2.14.1.10.1 Variation 1: Reactions with Alkynylsilanes;70
1.7.2.1.2.8.2;2.14.1.10.2 Variation 2: Reactions with Polyynes;70
1.7.2.1.2.9;2.14.1.11 Method 11: Lewis Base Exchange;72
1.7.2.1.2.10;2.14.1.12 Method 12: Reactions with Carbon Dioxide;72
1.7.2.2;2.14.2 Product Subclass 2: Zirconocene–Bis(trimethylsilyl)acetylene Complexes;73
1.7.2.2.1;Synthesis of Product Subclass 2;73
1.7.2.2.1.1;2.14.2.1 Method 1: Reduction of a Dichlorobis(.5-cyclopentadienyl)zirconium(IV) in the Presence of Bis(trimethylsilyl)acetylene;73
1.7.2.2.1.1.1;2.14.2.1.1 Variation 1: By Ligand Substitution;75
1.7.2.2.2;Applications of Product Subclass 2 in Organometallic Reactions;76
1.7.2.2.2.1;2.14.2.2 Method 2: Reactions with Brønsted Acids;76
1.7.2.2.2.2;2.14.2.3 Method 3: Reactions with Internal Alkynes;77
1.7.2.2.2.2.1;2.14.2.3.1 Variation 1: Alkyne Substitutions;78
1.7.2.2.2.2.2;2.14.2.3.2 Variation 2: Formation of Zirconacyclopenta-2,4-dienes;79
1.7.2.2.2.2.3;2.14.2.3.3 Variation 3: Macrocyclization;82
1.7.2.2.2.2.4;2.14.2.3.4 Variation 4: Formation of Pentakis(pentafluorophenyl)borole;83
1.7.2.2.2.3;2.14.2.4 Method 4: Reactions with Terminal Alkynes;84
1.7.2.2.2.4;2.14.2.5 Method 5: Reactions with Carbonyl Compounds;85
1.7.2.2.2.5;2.14.2.6 Method 6: Zirconocene–Bis(trimethylsilyl)acetylene Complexes in the Formation of Metallacycles;86
1.7.2.2.2.5.1;2.14.2.6.1 Variation 1: Formation of Five-Membered Metallacycles;86
1.7.2.2.2.5.2;2.14.2.6.2 Variation 2: Formation of Three-Membered Aza-metallacycles;87
1.7.2.2.2.5.3;2.14.2.6.3 Variation 3: Formation of Five-Membered Aza-metallacycles;88
1.7.2.2.2.5.4;2.14.2.6.4 Variation 4: Formation of Five- and Seven-Membered Oxa-metallacycles;89
1.7.2.2.2.5.5;2.14.2.6.5 Variation 5: Formation of Four-Membered Thia-metallacycles;90
1.7.2.2.2.6;2.14.2.7 Method 7: Zirconocene–Bis(trimethylsilyl)acetylene Complexes in Bond-Activation Reactions;91
1.7.2.2.2.6.1;2.14.2.7.1 Variation 1: Dinitrogen Activation;91
1.7.2.2.2.6.2;2.14.2.7.2 Variation 2: C--F versus C--H Bond Activation;92
1.7.2.2.2.6.3;2.14.2.7.3 Variation 3: C--H Bond Activation;93
1.7.2.3;2.14.3 Product Subclass 3: Hafnocene Bis(trimethylsilyl)acetylene Complexes;94
1.7.2.3.1;Synthesis of Product Subclass 3;94
1.7.2.3.1.1;2.14.3.1 Method 1: Reduction of a Dichlorobis(.5-cyclopentadienyl)hafnium in the Presence of Bis(trimethylsilyl)acetylene;94
1.7.2.3.1.2;2.14.3.2 Method 2: Synthesis from Dibutylbis(.5-cyclopentadienyl)hafnium(IV);97
1.7.2.3.2;Applications of Product Subclass 3 in Organometallic Reactions;97
1.7.2.3.2.1;2.14.3.3 Method 3: Reactions with Alkenes;97
1.8;Volume 6: Boron Compounds;104
1.8.1;6.1 Product Class 1: Boron Compounds;104
1.8.1.1;6.1.7.11 Hydroxyboranes;104
1.8.1.1.1;6.1.7.11.1 Method 1: Synthesis by Metal-Catalyzed C--H Borylation;104
1.8.1.1.1.1;6.1.7.11.1.1 Variation 1: Aromatic C--H Borylation;104
1.8.1.1.1.2;6.1.7.11.1.2 Variation 2: Dehydrogenative Borylation;107
1.8.1.1.2;6.1.7.11.2 Method 2: Synthesis by Borylative Cross Coupling;108
1.8.1.1.2.1;6.1.7.11.2.1 Variation 1: Palladium-Catalyzed Borylative Cross Coupling;108
1.8.1.1.2.2;6.1.7.11.2.2 Variation 2: Nickel- and Copper-Catalyzed Borylative Cross Coupling;109
1.8.1.1.2.3;6.1.7.11.2.3 Variation 3: Metal-Free Borylative Cross Coupling;110
1.8.1.1.3;6.1.7.11.3 Method 3: Synthesis by Direct Borylation with Borenium Cations;111
1.8.1.1.4;6.1.7.11.4 Method 4: Synthesis by Addition Reactions with Diboron Species;112
1.8.1.1.4.1;6.1.7.11.4.1 Variation 1: Addition of Diboron Species to Carbonyl or Thiocarbonyl Groups, or Aldimines;113
1.8.1.1.4.2;6.1.7.11.4.2 Variation 2: ß-Boration of a,ß-Unsaturated Carbonyl Derivatives;114
1.8.1.1.5;6.1.7.11.5 Method 5: Synthesis by Hydrolysis of Boronates or Trifluoro(organo)borates;115
1.8.1.1.6;6.1.7.11.6 Method 6: Chemoselective Chemical Transformations of Parent Free Boronic Acids or Derivatives;117
1.8.1.1.7;6.1.7.11.7 Method 7: Applications as Catalysts or Stoichiometric Reaction Promoters;118
1.8.1.1.7.1;6.1.7.11.7.1 Variation 1: Activation of Carboxylic Acids;119
1.8.1.1.7.2;6.1.7.11.7.2 Variation 2: Activation of Alcohols;121
1.8.1.1.7.3;6.1.7.11.7.3 Variation 3: Activation of Carbonyl Groups;123
1.8.1.1.7.4;6.1.7.11.7.4 Variation 4: Use as Stoichiometric Reaction Promoters;124
1.8.1.1.8;6.1.7.11.8 Method 8: Applications in Carbon--Heteroatom Bond Formation;125
1.8.1.1.8.1;6.1.7.11.8.1 Variation 1: C--O Bond Formation;126
1.8.1.1.8.2;6.1.7.11.8.2 Variation 2: C--X Bond Formation (X = Halogen);127
1.8.1.1.8.3;6.1.7.11.8.3 Variation 3: C--N Bond Formation;128
1.8.1.1.9;6.1.7.11.9 Method 9: Applications in C--C Bond Formation;129
1.8.1.1.9.1;6.1.7.11.9.1 Variation 1: ipso-Trifluoromethylation and ipso-Cyanation;129
1.8.1.1.9.2;6.1.7.11.9.2 Variation 2: C--H Arylation and Alkylation;130
1.8.1.1.9.3;6.1.7.11.9.3 Variation 3: Metal-Catalyzed Cross-Coupling Reactions;131
1.8.1.1.9.4;6.1.7.11.9.4 Variation 4: Addition and Substitution Reactions;133
1.8.1.1.10;6.1.7.11.10 Method 10: Applications as Productive Tags for Phase-Switch Purification;134
1.8.1.1.11;6.1.7.11.11 Method 11: Applications in Medicine and Materials Science;136
1.9;Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be ··· Ba);144
1.9.1;7.1 Product Class 1: Aluminum Compounds;144
1.9.1.1;7.1.4.7 Aluminum Alkoxides and Phenoxides;144
1.9.1.1.1;7.1.4.7.1 Method 1: Synthesis by Treatment of Alkylaluminum Compounds with Phenols;144
1.9.1.1.1.1;7.1.4.7.1.1 Variation 1: Reaction To Give Aluminum–Salen Complexes and Their µ-Oxo Dimers;144
1.9.1.1.2;7.1.4.7.2 Method 2: Applications of Aluminum Alkoxides;145
1.9.1.1.2.1;7.1.4.7.2.1 Variation 1: Reductions;145
1.9.1.1.2.2;7.1.4.7.2.2 Variation 2: Michael Additions;145
1.9.1.1.3;7.1.4.7.3 Method 3: Applications of Aluminum Phenoxides;146
1.9.1.1.3.1;7.1.4.7.3.1 Variation 1: Carbonyl Additions and Reductions;146
1.9.1.1.3.2;7.1.4.7.3.2 Variation 2: Conjugate Additions;147
1.9.1.1.3.3;7.1.4.7.3.3 Variation 3: Aldol Reactions;148
1.9.1.1.3.4;7.1.4.7.3.4 Variation 4: Meerwein–Ponndorf–Verley Reactions;151
1.9.1.1.3.5;7.1.4.7.3.5 Variation 5: Oppenauer Reactions;153
1.9.1.1.3.6;7.1.4.7.3.6 Variation 6: Cycloadditions;153
1.9.1.1.3.7;7.1.4.7.3.7 Variation 7: Cyclizations;154
1.9.1.1.3.8;7.1.4.7.3.8 Variation 8: Ferrier Reactions;155
1.9.1.1.3.9;7.1.4.7.3.9 Variation 9: Claisen Rearrangements;156
1.9.1.1.3.10;7.1.4.7.3.10 Variation 10: Intramolecular Prenyl Transfer Reactions;157
1.9.1.1.3.11;7.1.4.7.3.11 Variation 11: Radical Reactions;157
1.9.1.1.3.12;7.1.4.7.3.12 Variation 12: Asymmetric Conjugate Additions;158
1.9.1.1.3.13;7.1.4.7.3.13 Variation 13: Asymmetric Acylations;159
1.9.1.1.3.14;7.1.4.7.3.14 Variation 14: Asymmetric Wagner–Meerwein-Type Rearrangements;159
1.9.1.1.3.15;7.1.4.7.3.15 Variation 15: Asymmetric Passerini-Type Reactions;160
1.9.1.2;7.1.7.15 Aluminum Amides;162
1.9.1.2.1;7.1.7.15.1 Method 1: Synthesis by Treatment of Alkylaluminum Compounds with Amines;162
1.9.1.2.2;7.1.7.15.2 Method 2: Applications in Transformation of Esters;162
1.9.1.2.3;7.1.7.15.3 Method 3: Applications in Transformation of Amides;163
1.9.1.2.4;7.1.7.15.4 Method 4: Applications in Alkylation with Aluminum Reagents;163
1.9.1.2.5;7.1.7.15.5 Method 5: Applications in Wagner–Meerwein-Type Rearrangements;165
1.9.1.2.6;7.1.7.15.6 Method 6: Applications in the Ene Reaction;167
1.9.1.2.7;7.1.7.15.7 Method 7: Applications in Asymmetric Aldol Cycloadditions;168
1.10;Volume 8: Compounds of Group 1 (Li ··· Cs);170
1.10.1;8.1 Product Class 1: Lithium Compounds;170
1.10.1.1;8.1.29 Dearomatization Reactions Using Organolithiums;170
1.10.1.1.1;8.1.29.1 Intermolecular Dearomatization;170
1.10.1.1.1.1;8.1.29.1.1 Dearomatizing Additions to Aryl Rings Bearing No Further Activation;170
1.10.1.1.1.1.1;8.1.29.1.1.1 Method 1: Dearomatizing Addition to Naphthalenes;170
1.10.1.1.1.1.2;8.1.29.1.1.2 Method 2: Dearomatizing Addition to Condensed Polyaromatics;171
1.10.1.1.1.1.3;8.1.29.1.1.3 Method 3: Dearomatizing Addition to Pyridines and Other Electron-Deficient Heterocycles;172
1.10.1.1.1.2;8.1.29.1.2 Dearomatizing Addition to Activated Aromatic Rings;175
1.10.1.1.1.2.1;8.1.29.1.2.1 Method 1: Activation with 4,5-Dihydrooxazoles;175
1.10.1.1.1.2.1.1;8.1.29.1.2.1.1 Variation 1: Dearomatizing Addition to Naphthyl-4,5-dihydrooxazoles;175
1.10.1.1.1.2.1.2;8.1.29.1.2.1.2 Variation 2: Dearomatizing Addition to Pyridyl-4,5-dihydrooxazoles;177
1.10.1.1.1.2.1.3;8.1.29.1.2.1.3 Variation 3: Dearomatizing Addition to Phenyl-4,5-dihydrooxazoles;178
1.10.1.1.1.2.2;8.1.29.1.2.2 Method 2: Activation with Amides;180
1.10.1.1.1.2.2.1;8.1.29.1.2.2.1 Variation 1: Dearomatizing Addition to Naphthylamides;180
1.10.1.1.1.2.2.2;8.1.29.1.2.2.2 Variation 2: Dearomatizing Addition to Benzamides;181
1.10.1.1.1.2.3;8.1.29.1.2.3 Method 3: Activation with Aldehydes and Ketones;182
1.10.1.1.1.2.3.1;8.1.29.1.2.3.1 Variation 1: Dearomatizing Addition to Naphthyl Ketones;182
1.10.1.1.1.2.3.2;8.1.29.1.2.3.2 Variation 2: Dearomatizing Addition to Acetophenones and Benzaldehydes;182
1.10.1.1.1.2.4;8.1.29.1.2.4 Method 4: Activation with Esters;183
1.10.1.1.1.2.4.1;8.1.29.1.2.4.1 Variation 1: Dearomatizing Addition to Naphthyl Esters;183
1.10.1.1.1.2.4.2;8.1.29.1.2.4.2 Variation 2: Dearomatizing Addition to Benzoates;185
1.10.1.1.1.2.5;8.1.29.1.2.5 Method 5: Activation with Carboxylic Acids;185
1.10.1.1.1.2.6;8.1.29.1.2.6 Method 6: Activation with Sulfones;187
1.10.1.1.1.2.7;8.1.29.1.2.7 Method 7: Activation with Imines;187
1.10.1.1.2;8.1.29.2 Intramolecular Dearomatization (Dearomatizing Cyclization);189
1.10.1.1.2.1;8.1.29.2.1 Dearomatizing Cyclization of Lithiated Amides;189
1.10.1.1.2.1.1;8.1.29.2.1.1 Method 1: Dearomatizing Cyclization of Naphthamides;189
1.10.1.1.2.1.1.1;8.1.29.2.1.1.1 Variation 1: N-Allylnaphthamides;191
1.10.1.1.2.1.1.2;8.1.29.2.1.1.2 Variation 2: Chiral N-Benzylnaphthamides;192
1.10.1.1.2.1.2;8.1.29.2.1.2 Method 2: Dearomatizing Cyclization of Benzamides;192
1.10.1.1.2.1.2.1;8.1.29.2.1.2.1 Variation 1: Asymmetric Dearomatizing Cyclization with Chiral Lithium Amides;194
1.10.1.1.2.1.2.2;8.1.29.2.1.2.2 Variation 2: Stereospecific Dearomatizing Cyclization of (1-Phenylethyl)benzamides;196
1.10.1.1.2.1.2.3;8.1.29.2.1.2.3 Variation 3: Dearomatizing Cyclization of N-Benzoyloxazolidines;197
1.10.1.1.2.1.2.4;8.1.29.2.1.2.4 Variation 4: Photochemical Rearrangements of the Dearomatized Products;198
1.10.1.1.2.1.3;8.1.29.2.1.3 Method 3: Dearomatizing Cyclization of Pyridine- and Quinolinecarboxamides;200
1.10.1.1.2.1.3.1;8.1.29.2.1.3.1 Variation 1: Cyclizations of Lithium Enolates;202
1.10.1.1.2.1.4;8.1.29.2.1.4 Method 4: Dearomatizing Cyclization of Electron-Rich Heterocyclic Amides;204
1.10.1.1.2.1.4.1;8.1.29.2.1.4.1 Variation 1: Pyrrolecarboxamides;204
1.10.1.1.2.1.4.2;8.1.29.2.1.4.2 Variation 2: Thiophenecarboxamides;207
1.10.1.1.2.2;8.1.29.2.2 Dearomatizing Cyclization of Other Lithiated Compounds;210
1.10.1.1.2.2.1;8.1.29.2.2.1 Method 1: Dearomatizing Cyclization of Lithiated Phosphinamides;210
1.10.1.1.2.2.2;8.1.29.2.2.2 Method 2: Dearomatizing Cyclization of Lithiated Azo Compounds;211
1.10.1.1.2.2.3;8.1.29.2.2.3 Method 3: Dearomatizing Cyclization of Lithiated 4,5-Dihydrooxazoles;212
1.10.1.1.2.2.4;8.1.29.2.2.4 Method 4: Dearomatizing Cyclization of Lithiated Sulfones;213
1.10.1.1.2.2.5;8.1.29.2.2.5 Method 5: [2,3]-Sigmatropic Dearomatization of Lithiated Sulfonium Salts;214
1.10.1.1.3;8.1.29.3 Rearrangements Proceeding via Dearomatized Intermediates;214
1.10.1.1.3.1;8.1.29.3.1 Method 1: Arylation of N-Benzylureas;214
1.10.1.1.3.1.1;8.1.29.3.1.1 Variation 1: Pyridylation of Ureas;216
1.10.1.1.3.1.2;8.1.29.3.1.2 Variation 2: Arylation of N-Allylureas;217
1.10.1.1.3.2;8.1.29.3.2 Method 2: Arylation of O-Benzyl Carbamates;218
1.10.1.1.3.3;8.1.29.3.3 Method 3: Arylation of S-Benzyl Thiocarbamates;218
1.10.1.2;8.1.30 Carbolithiation of Carbon–Carbon Multiple Bonds;222
1.10.1.2.1;8.1.30.1 Intermolecular Carbolithiation of C==C Bonds;222
1.10.1.2.1.1;8.1.30.1.1 Method 1: Addition of Alkyllithiums to Alkenes;223
1.10.1.2.1.1.1;8.1.30.1.1.1 Variation 1: Carbolithiation of Styrene Derivatives;223
1.10.1.2.1.1.2;8.1.30.1.1.2 Variation 2: Carbolithiation of 1-Substituted Vinylarenes;226
1.10.1.2.1.1.3;8.1.30.1.1.3 Variation 3: Carbolithiation of Stilbenes;228
1.10.1.2.1.2;8.1.30.1.2 Method 2: Addition of Aryl- and Hetaryllithiums to Alkenes;230
1.10.1.2.1.2.1;8.1.30.1.2.1 Variation 1: Halogen–Lithium Exchange;230
1.10.1.2.1.2.2;8.1.30.1.2.2 Variation 2: Carbolithiation with Lithium Dianions;231
1.10.1.2.2;8.1.30.2 Intramolecular Carbolithiation of C==C Bonds;232
1.10.1.2.2.1;8.1.30.2.1 Method 1: Addition of Alkyllithiums to Alkenes;233
1.10.1.2.2.1.1;8.1.30.2.1.1 Variation 1: Halogen–Lithium Exchange;233
1.10.1.2.2.1.2;8.1.30.2.1.2 Variation 2: Arene-Catalyzed Lithiation;234
1.10.1.2.2.1.3;8.1.30.2.1.3 Variation 3: Tin–Lithium Exchange;237
1.10.1.2.2.1.4;8.1.30.2.1.4 Variation 4: Selenium–Lithium Exchange;239
1.10.1.2.2.2;8.1.30.2.2 Method 2: Addition of Alkenyllithiums to Alkenes;240
1.10.1.2.2.2.1;8.1.30.2.2.1 Variation 1: Halogen–Lithium Exchange;240
1.10.1.2.2.2.2;8.1.30.2.2.2 Variation 2: Carbolithiation of Lithiated Double Bonds Obtained by Halogen–Lithium Exchange;242
1.10.1.2.2.3;8.1.30.2.3 Method 3: Addition of Aryl- and Hetaryllithiums to Alkenes;244
1.10.1.2.2.3.1;8.1.30.2.3.1 Variation 1: Formation of Five-Membered Rings;244
1.10.1.2.2.3.2;8.1.30.2.3.2 Variation 2: Formation of Six-Membered Rings;248
1.10.1.2.3;8.1.30.3 Intermolecular Carbolithiation of C==C Bonds;250
1.10.1.2.3.1;8.1.30.3.1 Method 1: Addition of Alkyl- and Aryllithiums to Alkynes;251
1.10.1.2.4;8.1.30.4 Intramolecular Carbolithiation of C==C Bonds;253
1.10.1.2.4.1;8.1.30.4.1 Method 1: Addition of Alkyllithiums to Alkynes;253
1.10.1.2.4.1.1;8.1.30.4.1.1 Variation 1: Deprotonation;254
1.10.1.2.4.1.2;8.1.30.4.1.2 Variation 2: Tin–Lithium Exchange;255
1.10.1.2.4.1.3;8.1.30.4.1.3 Variation 3: Selenium–Lithium Exchange;257
1.10.1.2.4.1.4;8.1.30.4.1.4 Variation 4: Halogen–Lithium Exchange;257
1.10.1.2.4.2;8.1.30.4.2 Method 2: Addition of Alkenyllithiums to Alkynes;258
1.10.1.2.4.2.1;8.1.30.4.2.1 Variation 1: Cyclization of Vinyllithiums onto Alkynes;258
1.10.1.2.4.2.2;8.1.30.4.2.2 Variation 2: Cyclization of Vinyllithiums onto Arynes;260
1.10.1.2.4.3;8.1.30.4.3 Method 3: Addition of Aryl- and Hetaryllithiums to Alkynes;261
1.10.1.2.4.3.1;8.1.30.4.3.1 Variation 1: Cyclization of Aryllithiums onto Alkynes;262
1.10.1.2.4.3.2;8.1.30.4.3.2 Variation 2: Cyclization of Aryllithiums onto Arynes;263
1.10.1.2.5;8.1.30.5 Inter- and Intramolecular Addition of Alkyllithiums to Arenes;265
1.10.1.2.5.1;8.1.30.5.1 Method 1: Intermolecular Dearomatizing Addition of Alkyllithiums to Arenes;265
1.10.1.2.5.2;8.1.30.5.2 Method 2: Intramolecular Dearomatizing Addition of Alkyllithiums to Arenes;266
1.10.1.2.6;8.1.30.6 Cascade Reactions;268
1.10.1.2.6.1;8.1.30.6.1 Method 1: Tandem Intermolecular–Intramolecular Carbolithiations;268
1.10.1.2.6.2;8.1.30.6.2 Method 2: Tandem Aminolithiation–Carbolithiation;270
1.10.1.2.7;8.1.30.7 Intermolecular Enantioselective Addition of Organolithiums to Alkenes;271
1.10.1.2.7.1;8.1.30.7.1 Method 1: Intermolecular Addition of Alkyllithiums to Alkenes;271
1.10.1.2.8;8.1.30.8 Intramolecular Enantioselective Addition of Organolithiums to Alkenes;274
1.10.1.2.8.1;8.1.30.8.1 Method 1: Intramolecular Addition of Alkyllithiums to Alkenes;275
1.10.1.2.8.2;8.1.30.8.2 Method 2: Intramolecular Addition of Aryllithiums to Alkenes;276
1.11;Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms;284
1.11.1;16.14 Product Class 14: Pyrazines;284
1.11.1.1;16.14.5 Pyrazines;284
1.11.1.1.1;16.14.5.1 Synthesis by Ring-Closure Reactions;287
1.11.1.1.1.1;16.14.5.1.1 By Formation of Four N--C Bonds;287
1.11.1.1.1.1.1;16.14.5.1.1.1 Fragments C--C, C--C, and Two N Fragments;287
1.11.1.1.1.1.1.1;16.14.5.1.1.1.1 Method 1: From a 1,2-Bifunctional Compound and Ammonia or Ammonium;287
1.11.1.1.1.2;16.14.5.1.2 By Formation of Three N--C Bonds;288
1.11.1.1.1.2.1;16.14.5.1.2.1 Fragments N--C--C, C--C, and N;288
1.11.1.1.1.2.1.1;16.14.5.1.2.1.1 Method 1: From an a-Amino Ketone, an a-Hydroxy Ketone, and Ammonium Acetate;288
1.11.1.1.1.3;16.14.5.1.3 By Formation of Two N--C Bonds;288
1.11.1.1.1.3.1;16.14.5.1.3.1 Fragments N--C--C--N and C--C;288
1.11.1.1.1.3.1.1;16.14.5.1.3.1.1 Method 1: From Alkane-1,2-diamines;288
1.11.1.1.1.3.1.2;16.14.5.1.3.1.2 Method 2: From Alkene-1,2-diamines;292
1.11.1.1.1.3.1.3;16.14.5.1.3.1.3 Method 3: From a-Amino Amides;293
1.11.1.1.1.3.1.4;16.14.5.1.3.1.4 Method 4: From a-Amino Nitriles;294
1.11.1.1.1.3.1.5;16.14.5.1.3.1.5 Method 5: From 1,4-Diazabutadienes;295
1.11.1.1.1.3.2;16.14.5.1.3.2 Fragments N--C--C and N--C--C;296
1.11.1.1.1.3.2.1;16.14.5.1.3.2.1 Method 1: By Cyclodimerization of Azirines;296
1.11.1.1.1.3.2.2;16.14.5.1.3.2.2 Method 2: By Self-Condensation;297
1.11.1.1.1.3.2.3;16.14.5.1.3.2.3 Method 3: By Condensation of Two Different a-Amino Ketones or Cyanides;299
1.11.1.1.1.3.3;16.14.5.1.3.3 Fragments C--C--N--C--C and N;302
1.11.1.1.1.3.3.1;16.14.5.1.3.3.1 Method 1: From ß,ß'-Difunctional Secondary Amines (or Amides) and Ammonia;302
1.11.1.1.1.4;16.14.5.1.4 By Formation of One N--C Bond;303
1.11.1.1.1.4.1;16.14.5.1.4.1 Fragment N--C--C--N--C--C;303
1.11.1.1.1.4.1.1;16.14.5.1.4.1.1 Method 1: Intramolecular Cyclization of a N--C--C--N--C--C Fragment;303
1.11.1.1.2;16.14.5.2 Synthesis by Ring Transformation;304
1.11.1.1.2.1;16.14.5.2.1 Method 1: Ring Transformation of Imidazoles;304
1.11.1.1.3;16.14.5.3 Aromatization;305
1.11.1.1.3.1;16.14.5.3.1 Method 1: Dehydrogenation of Dihydropyrazines;305
1.11.1.1.3.2;16.14.5.3.2 Method 2: By Elimination;306
1.11.1.1.4;16.14.5.4 Synthesis by Substituent Modification;307
1.11.1.1.4.1;16.14.5.4.1 Substitution of Existing Substituents;307
1.11.1.1.4.1.1;16.14.5.4.1.1 Of Hydrogen;307
1.11.1.1.4.1.1.1;16.14.5.4.1.1.1 Method 1: Metalation;307
1.11.1.1.4.1.1.2;16.14.5.4.1.1.2 Method 2: Acylation, Amidation, Alkylation, and Arylation;309
1.11.1.1.4.1.1.2.1;16.14.5.4.1.1.2.1 Variation 1: Homolytic Acylation and Amidation;309
1.11.1.1.4.1.1.2.2;16.14.5.4.1.1.2.2 Variation 2: Direct Alkylation and Arylation;310
1.11.1.1.4.1.1.2.3;16.14.5.4.1.1.2.3 Variation 3: Alkylation, Arylation, and Alkenylation of Pyrazine N-Oxides;311
1.11.1.1.4.1.1.3;16.14.5.4.1.1.3 Method 3: Halogenation;313
1.11.1.1.4.1.1.3.1;16.14.5.4.1.1.3.1 Variation 1: Halogenation of Pyrazinamines;313
1.11.1.1.4.1.1.3.2;16.14.5.4.1.1.3.2 Variation 2: Halogenation of Pyrazinols;315
1.11.1.1.4.1.1.3.3;16.14.5.4.1.1.3.3 Variation 3: Deoxidative Chlorination of Pyrazine N-Oxides;316
1.11.1.1.4.1.1.4;16.14.5.4.1.1.4 Method 4: Nitration;317
1.11.1.1.4.1.2;16.14.5.4.1.2 Of Metals;317
1.11.1.1.4.1.3;16.14.5.4.1.3 Of Carbon Functionalities;319
1.11.1.1.4.1.3.1;16.14.5.4.1.3.1 Method 1: Decarboxylation, Decyanation, and Debenzylation;319
1.11.1.1.4.1.4;16.14.5.4.1.4 Of Halogen;320
1.11.1.1.4.1.4.1;16.14.5.4.1.4.1 Method 1: Reduction;320
1.11.1.1.4.1.4.2;16.14.5.4.1.4.2 Method 2: Metalation;321
1.11.1.1.4.1.4.3;16.14.5.4.1.4.3 Method 3: Alkylation, Arylation, and Related Reactions;323
1.11.1.1.4.1.4.3.1;16.14.5.4.1.4.3.1 Variation 1: Grignard Reaction and Related Reactions;323
1.11.1.1.4.1.4.3.2;16.14.5.4.1.4.3.2 Variation 2: Suzuki–Miyaura Cross-Coupling Reaction and Related Reactions;324
1.11.1.1.4.1.4.3.3;16.14.5.4.1.4.3.3 Variation 3: Negishi Cross-Coupling Reaction and Related Reactions;332
1.11.1.1.4.1.4.3.4;16.14.5.4.1.4.3.4 Variation 4: Stille Cross-Coupling Reaction and Related Reactions;333
1.11.1.1.4.1.4.3.5;16.14.5.4.1.4.3.5 Variation 5: Other Cross-Coupling Reactions for Arylation;335
1.11.1.1.4.1.4.4;16.14.5.4.1.4.4 Method 4: Alkenylation and Related Reactions;335
1.11.1.1.4.1.4.5;16.14.5.4.1.4.5 Method 5: Alkynylation and Related Reactions;338
1.11.1.1.4.1.4.6;16.14.5.4.1.4.6 Method 6: Functionalized Methylation;339
1.11.1.1.4.1.4.7;16.14.5.4.1.4.7 Method 7: Cyanation and Carbonylation;341
1.11.1.1.4.1.4.8;16.14.5.4.1.4.8 Method 8: Halogenation;343
1.11.1.1.4.1.4.9;16.14.5.4.1.4.9 Method 9: Hydroxylation, Alkoxylation, and Sulfanylation;343
1.11.1.1.4.1.4.10;16.14.5.4.1.4.10 Method 10: Amination, Azidation, and Phosphonation;347
1.11.1.1.4.1.5;16.14.5.4.1.5 Of Oxygen and Sulfur Functionalities;351
1.11.1.1.4.1.5.1;16.14.5.4.1.5.1 Method 1: Deoxygenation of N-Oxides and Reductive Removal of Oxygen Functionalities;351
1.11.1.1.4.1.5.2;16.14.5.4.1.5.2 Method 2: Halogenation;352
1.11.1.1.4.1.5.3;16.14.5.4.1.5.3 Method 3: O-Sulfonylation;353
1.11.1.1.4.1.5.4;16.14.5.4.1.5.4 Method 4: Alkylation and Arylation;354
1.11.1.1.4.1.6;16.14.5.4.1.6 Of Nitrogen Functionalities;356
1.11.1.1.4.1.6.1;16.14.5.4.1.6.1 Method 1: Halopyrazines, Pyrazinols, and Methoxypyrazines from Aminopyrazines;32
1.11.1.1.4.2;16.14.5.4.2 Addition Reactions;356
1.11.1.1.4.2.1;16.14.5.4.2.1 Method 1: N-Alkylation and N-Arylation;356
1.11.1.1.4.2.2;16.14.5.4.2.2 Method 2: N-Oxidation;358
1.11.1.1.4.3;16.14.5.4.3 Rearrangement of Substituents;359
1.11.1.1.4.3.1;16.14.5.4.3.1 Method 1: Hofmann or Curtius Rearrangement;359
1.11.1.1.4.4;16.14.5.4.4 Modification of Substituents;359
1.11.1.1.4.4.1;16.14.5.4.4.1 Method 1: Degradation of Condensed Pyrazines;359
1.11.1.1.4.4.2;16.14.5.4.4.2 Method 2: Modification of Carbon Substituents;361
1.11.1.1.4.4.3;16.14.5.4.4.3 Method 3: Modification of Nitrogen and Chalcogen Substituents;365
1.12;Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles;376
1.12.1;17.3 Product Class 3: Six-Membered Hetarenes with More than Three Heteroatoms;376
1.12.1.1;17.3.4 Six-Membered Hetarenes with More than Three Heteroatoms;376
1.12.1.1.1;17.3.4.1 1,2,3,4-Tetrazines;376
1.12.1.1.1.1;17.3.4.1.1 Method 1: Synthesis of 1,2,3,4-Tetrazine N-Oxides;377
1.12.1.1.1.1.1;17.3.4.1.1.1 Variation 1: Via Nitration;377
1.12.1.1.2;17.3.4.2 1,2,3,5-Tetrazines;379
1.12.1.1.3;17.3.4.3 1,2,4,5-Tetrazines;379
1.12.1.1.3.1;17.3.4.3.1 Synthesis by Ring-Closure Reactions;380
1.12.1.1.3.1.1;17.3.4.3.1.1 By Formation of Four N--C Bonds;380
1.12.1.1.3.1.1.1;17.3.4.3.1.1.1 Fragments N--N, N--N, and Two C Fragments;380
1.12.1.1.3.1.1.1.1;17.3.4.3.1.1.1.1 Method 1: Dimerization of Activated Hydrazidic Acid Derivatives;380
1.12.1.1.3.1.1.1.1.1;17.3.4.3.1.1.1.1.1 Variation 1: From Nitriles;380
1.12.1.1.3.1.1.1.1.2;17.3.4.3.1.1.1.1.2 Variation 2: From Carboxylic Acid Derivatives;383
1.12.1.1.3.1.2;17.3.4.3.1.2 By Formation of Two N--C Bonds;385
1.12.1.1.3.1.2.1;17.3.4.3.1.2.1 Fragments C--N--N--C and N--N;385
1.12.1.1.3.1.2.1.1;17.3.4.3.1.2.1.1 Method 1: Oxidation of Dihydrotetrazines;385
1.12.1.1.3.2;17.3.4.3.2 Aromatization;385
1.12.1.1.3.3;17.3.4.3.3 Synthesis by Substituent Modification;385
1.12.1.1.3.3.1;17.3.4.3.3.1 Substitution of Existing Substituents;385
1.12.1.1.3.3.1.1;17.3.4.3.3.1.1 Of Heteroatoms;385
1.12.1.1.3.3.1.1.1;17.3.4.3.3.1.1.1 Method 1: Substitution of Halogen Substituents;386
1.12.1.1.3.3.1.1.1.1;17.3.4.3.3.1.1.1.1 Variation 1: Nucleophilic Aromatic Substitution;386
1.12.1.1.3.3.1.1.1.2;17.3.4.3.3.1.1.1.2 Variation 2: Palladium-Catalyzed Coupling;392
1.12.1.1.3.3.1.1.2;17.3.4.3.3.1.1.2 Method 2: Substitution of Sulfur Substituents;393
1.12.1.1.3.3.1.1.2.1;17.3.4.3.3.1.1.2.1 Variation 1: Nucleophilic Substitution;393
1.12.1.1.3.3.1.1.2.2;17.3.4.3.3.1.1.2.2 Variation 2: Palladium-Catalyzed Coupling;393
1.12.1.1.3.3.1.1.3;17.3.4.3.3.1.1.3 Method 3: Substitution of Nitrogen Substituents;395
1.12.1.1.3.3.2;17.3.4.3.3.2 Modification of Substituents;401
1.13;Volume 19: Three Carbon--Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives;408
1.13.1;19.5 Product Class 5: Nitriles;408
1.13.1.1;19.5.16 Asymmetric Synthesis of Nitriles;408
1.13.1.1.1;19.5.16.1 Introduction of the Cyano Group by Addition to a Carbonyl Group;408
1.13.1.1.1.1;19.5.16.1.1 Method 1: Catalytic Asymmetric Cyanation of Aldehydes;408
1.13.1.1.1.1.1;19.5.16.1.1.1 Variation 1: Use of Enzymes;408
1.13.1.1.1.1.2;19.5.16.1.1.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts;409
1.13.1.1.1.1.3;19.5.16.1.1.3 Variation 3: Use of Chiral Aluminum Complexes as Catalysts;414
1.13.1.1.1.1.4;19.5.16.1.1.4 Variation 4: Use of Chiral Yttrium Complexes as Catalysts;417
1.13.1.1.1.1.5;19.5.16.1.1.5 Variation 5: Use of Chiral Ruthenium Complexes as Catalysts;418
1.13.1.1.1.1.6;19.5.16.1.1.6 Variation 6: Use of Chiral Boron-Based Catalysts;419
1.13.1.1.1.1.7;19.5.16.1.1.7 Variation 7: Use of Chiral Vanadium-Based Catalysts;420
1.13.1.1.1.1.8;19.5.16.1.1.8 Variation 8: Use of Chiral Bases as Catalysts;422
1.13.1.1.1.2;19.5.16.1.2 Method 2: Catalytic Asymmetric Cyanation of Ketones;425
1.13.1.1.1.2.1;19.5.16.1.2.1 Variation 1: Use of Enzymes;425
1.13.1.1.1.2.2;19.5.16.1.2.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts;426
1.13.1.1.1.2.3;19.5.16.1.2.3 Variation 3: Use of Chiral Aluminum Complexes as Catalysts;427
1.13.1.1.1.2.4;19.5.16.1.2.4 Variation 4: Use of a Chiral Gadolinium Complex as Catalyst;430
1.13.1.1.1.2.5;19.5.16.1.2.5 Variation 5: Use of Chiral Ruthenium Complexes as Catalysts;430
1.13.1.1.1.2.6;19.5.16.1.2.6 Variation 6: Use of Chiral Organic Salts;431
1.13.1.1.1.2.7;19.5.16.1.2.7 Variation 7: Use of Chiral Organocatalysts;433
1.13.1.1.2;19.5.16.2 Introduction of the Cyano Group by Addition to an Imino Group;437
1.13.1.1.2.1;19.5.16.2.1 Asymmetric Synthesis of a-Aminonitriles Derived from Aldimines;437
1.13.1.1.2.1.1;19.5.16.2.1.1 Method 1: Asymmetric Strecker Reactions with Chiral Auxiliaries;437
1.13.1.1.2.1.1.1;19.5.16.2.1.1.1 Variation 1: Use of Chiral Sulfinamides;437
1.13.1.1.2.1.1.2;19.5.16.2.1.1.2 Variation 2: Use of Chiral Hydrazones;438
1.13.1.1.2.1.2;19.5.16.2.1.2 Method 2: Catalytic Asymmetric Cyanation of Aldimines;439
1.13.1.1.2.1.2.1;19.5.16.2.1.2.1 Variation 1: Use of Chiral Aluminum Complexes as Catalysts;32
1.13.1.1.2.1.2.2;19.5.16.2.1.2.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts;441
1.13.1.1.2.1.2.3;19.5.16.2.1.2.3 Variation 3: Use of Chiral Lanthanide Complexes as Catalysts;443
1.13.1.1.2.1.2.4;19.5.16.2.1.2.4 Variation 4: Use of Chiral Thioureas as Catalysts;32
1.13.1.1.2.1.2.5;19.5.16.2.1.2.5 Variation 5: Use of Chiral BINOL–Phosphoric Acids as Catalysts;446
1.13.1.1.2.1.2.6;19.5.16.2.1.2.6 Variation 6: Use of Chiral Quaternary Ammonium Salts as Catalysts;32
1.13.1.1.2.1.2.7;19.5.16.2.1.2.7 Variation 7: Use of a Chiral Bisformamide as Catalyst;449
1.13.1.1.2.1.2.8;19.5.16.2.1.2.8 Variation 8: Use of a Chiral N,N'-Dioxide as Catalyst;450
1.13.1.1.2.2;19.5.16.2.2 Asymmetric Synthesis of a-Aminonitriles Derived from Ketimines;451
1.13.1.1.2.2.1;19.5.16.2.2.1 Method 1: Asymmetric Strecker Reactions with Chiral Auxiliaries;451
1.13.1.1.2.2.1.1;19.5.16.2.2.1.1 Variation 1: Use of Chiral Sulfinamides;451
1.13.1.1.2.2.2;19.5.16.2.2.2 Method 2: Catalytic Asymmetric Cyanation of Ketimines;452
1.13.1.1.2.2.2.1;19.5.16.2.2.2.1 Variation 1: Use of Chiral Thioureas as Catalysts;452
1.13.1.1.2.2.2.2;19.5.16.2.2.2.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts;453
1.13.1.1.2.2.2.3;19.5.16.2.2.2.3 Variation 3: Use of Chiral Gadolinium Complexes as Catalysts;454
1.13.1.1.2.2.2.4;19.5.16.2.2.2.4 Variation 4: Use of Chiral N,N'-Dioxides as Catalysts;455
1.13.1.1.2.2.2.5;19.5.16.2.2.2.5 Variation 5: Use of Chiral Sodium 1,1'-Binaphthalene-2,2'-diyl Phosphate as Catalyst;457
1.13.1.1.3;19.5.16.3 Introduction of the Cyano Group by Conjugate Addition;458
1.13.1.1.3.1;19.5.16.3.1 Method 1: Use of a Chiral Auxiliary;459
1.13.1.1.3.2;19.5.16.3.2 Method 2: Use of Chiral Aluminum Complexes as Catalysts;460
1.13.1.1.3.3;19.5.16.3.3 Method 3: Use of Chiral Gadolinium Complexes as Catalysts;461
1.13.1.1.3.4;19.5.16.3.4 Method 4: Use of Chiral Strontium Complexes as Catalysts;465
1.13.1.1.3.5;19.5.16.3.5 Method 5: Use of Chiral Titanium Complexes as Catalysts;466
1.13.1.1.3.6;19.5.16.3.6 Method 6: Use of Chiral Ruthenium Complexes as Catalysts;467
1.13.1.1.3.7;19.5.16.3.7 Method 7: Use of Chiral Organic Salts;468
1.13.1.1.4;19.5.16.4 Introduction of the Cyano Group by Hydrocyanation of Alkenes;471
1.13.1.1.4.1;19.5.16.4.1 Method 1: Use of Chiral Nickel Complexes as Catalysts;471
1.14;Volume 27: Heteroatom Analogues of Aldehydes and Ketones;476
1.14.1;27.15 Product Class 15: Oximes;476
1.14.1.1;27.15.1 Synthesis of Product Class 15;476
1.14.1.1.1;27.15.1.1 Method 1: Condensation of Carbonyl Compounds and Hydroxylamine;476
1.14.1.1.2;27.15.1.2 Method 2: Nitrosation;477
1.14.1.1.2.1;27.15.1.2.1 Variation 1: Electrophilic Nitrosation of Active Methylene Compounds;478
1.14.1.1.2.2;27.15.1.2.2 Variation 2: Electrophilic Nitrosation of Alkenes;479
1.14.1.1.2.3;27.15.1.2.3 Variation 3: Radical Nitrosation;480
1.14.1.1.3;27.15.1.3 Method 3: Oxidation of Amino Compounds;481
1.14.1.1.3.1;27.15.1.3.1 Variation 1: Oxidation of Hydroxylamines;481
1.14.1.1.3.2;27.15.1.3.2 Variation 2: Oxidation of Primary Amines;482
1.14.1.1.4;27.15.1.4 Method 4: Reduction of Nitro and Nitroso Compounds;483
1.14.1.1.4.1;27.15.1.4.1 Variation 1: Reduction of Nitroalkanes;483
1.14.1.1.4.2;27.15.1.4.2 Variation 2: Reduction of Conjugated Nitroalkenes;485
1.14.1.1.4.3;27.15.1.4.3 Variation 3: Reduction of gem-Chloronitroso Compounds;485
1.14.1.1.5;27.15.1.5 Method 5: Additional Methods;486
1.14.1.2;27.15.2 Applications of Product Class 15 in Organic Synthesis;488
1.14.1.2.1;27.15.2.1 Method 1: Formal Substitution with Cleavage of the O--N Bond;488
1.14.1.2.1.1;27.15.2.1.1 Variation 1: Via Oxidative Addition to Transition Metals;489
1.14.1.2.1.2;27.15.2.1.2 Variation 2: With Nucleophiles;491
1.14.1.2.1.3;27.15.2.1.3 Variation 3: Via Radical Intermediates;494
1.14.1.2.2;27.15.2.2 Method 2: Formal Elimination;497
1.14.1.2.2.1;27.15.2.2.1 Variation 1: Generation of 1,3-Dipoles;497
1.14.1.2.2.2;27.15.2.2.2 Variation 2: Conversion into Nitriles;499
1.14.1.2.2.3;27.15.2.2.3 Variation 3: Regeneration of Carbonyl Compounds;501
1.14.1.2.3;27.15.2.3 Method 3: Addition Reactions;502
1.14.1.2.3.1;27.15.2.3.1 Variation 1: Reduction to Primary Amines;502
1.14.1.2.3.2;27.15.2.3.2 Variation 2: Reduction to Hydroxylamines;503
1.14.1.2.3.3;27.15.2.3.3 Variation 3: With Radicals;504
1.14.1.2.3.4;27.15.2.3.4 Variation 4: With Carbon Nucleophiles;505
1.14.1.2.4;27.15.2.4 Method 4: Rearrangements;506
1.14.1.2.4.1;27.15.2.4.1 Variation 1: Beckmann Rearrangement;506
1.14.1.2.4.2;27.15.2.4.2 Variation 2: Neber Reaction;509
1.14.1.2.5;27.15.2.5 Method 5: Reactions with Retention of the Oxime Moiety;510
1.14.1.2.5.1;27.15.2.5.1 Variation 1: E/Z-Isomerization;510
1.14.1.2.5.2;27.15.2.5.2 Variation 2: a-Alkylation;511
1.14.1.2.5.3;27.15.2.5.3 Variation 3: Radical Reactions of Sulfonyloxime Ethers;512
1.14.1.2.6;27.15.2.6 Method 6: Directing Group for C--H Functionalization;513
1.14.1.2.7;27.15.2.7 Method 7: Additional Reactions;517
1.15;Author Index;532
1.16;Abbreviations;564
1.17;List of All Volumes;570


2.12.15 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides (Update 2011)
P. Dissanayake, D. J. Averill, and M. J. Allen 2.12.15.1 Lanthanide-Catalyzed Mukaiyama Aldol Reactions
This chapter summarizes the use of lanthanide-containing catalysts for Mukaiyama aldol reactions since 1987. In this chapter, reactions are categorized as follows: (1) non-enantio-selective formation of ß-hydroxycarbonyls (? Section 2.12.15.1.1), (2) enantioselective formation of ß-hydroxycarbonyls in an organic solvent (? Section 2.12.15.1.2.1), and (3) enantioselective formation of ß-hydroxycarbonyls in an aqueous solvent (? Section 2.12.15.1.2.2). 2.12.15.1.1 Method 1: Non-enantioselective Formation of ß-Hydroxycarbonyls
Lanthanide-catalyzed Mukaiyama aldol reactions between aldehydes 1 and the methyl trimethylsilyl acetal 2, to obtain Mukaiyama aldol products 3, were first reported using lanthanide(III) chlorides (? Scheme 1).[1] Furthermore, the reactions also proceed smoothly at room temperature when lanthanide(III) bromides are used as catalysts.[2] In addition to lanthanides in the +3 oxidation state, samarium(II) iodide can also be used as an efficient catalyst for this reaction, and the samarium(II) iodide precatalyst is stable enough to be stored under argon without oxidation (? Scheme 1).[3] ? Scheme 1 Mukaiyama Aldol Reactions Catalyzed by Lanthanide Catalysts[1] R1 Catalyst Temp (°C) Time Yielda (%) Ref         3 4   Ph SmCl3 rt 12 h 66 28 [1] Ph CeCl3 rt 24 h 61 27 [1] Ph LaCl3 rt 4 d 21 42 [1] (CH2)4Me SmCl3 rt 36 h 47 16 [1] 4-MeOC6H4 LnBr3 (THF)2.6 rt 2 hb,c 86 n.r. [2] 3-O2NC6H4 LnBr3 (THF)2.6 rt 4 hb,d n.r. 83 [2] 4-MeOC6H4 SmI2 (THF)2 –78 5 min 95 n.r. [3] 4-MeOC6H4 SmI3 (THF)3 –78 5 min 95 n.r. [3] Ph SmI2(THF)2 –78 5 min 95 n.r. [3] (CH2)6Me SmI2(THF)2 –20 4.5 h 90 n.r. [3] a n.r. = not reported. b Catalyst prepared from mischmetal. c LnBr3 (THF)2.6 (20 mol%). d LnBr3 (THF)2.6 (10 mol%). Another variation of the lanthanide-catalyzed Mukaiyama aldol reaction is carried out in aqueous media using a catalytic amount of ytterbium(III) trifluoromethanesulfonate. These aqueous reactions between formaldehyde and silyl enol ethers 5 yield hydroxymethylated adducts 6 as shown in ? Scheme 2.[4] ? Scheme 2 Mukaiyama Aldol Reactions Catalyzed by Ytterbium(III) Trifluoromethanesulfonate under Aqueous Conditions[4] R1 R2 R3 Yield (%) Ref Me H Ph 94 [4] H Me Et 85 [4] H (CH2)3CHMe 86a [4] Me (CH2)4 92 [4] iPr H Ph 92 [4] Me 90b [4] a dr 3:2. b dr (anti/syn) 9:1. In addition to using cosolvents with water, lanthanide Lewis acid–surfactant combined precatalysts are used for Mukaiyama aldol reactions in water (? Schemes 3 and 4).[5,6] The reaction between benzaldehyde and silyl enol ether 7 to yield aldol adduct 8 (? Scheme 3) suggests that the amount of surfactant, sodium dodecyl sulfate, influences the reaction yield. The aqueous Mukaiyama aldol reactions of a,ß-epoxyaldehydes 9 with silyl enol ether 10 to yield adducts 11 have also been reported using sodium dodecyl sulfate (? Scheme 4).[6] ? Scheme 3 Mukaiyama Aldol Reaction Catalyzed by an Ytterbium(III) Trifluoromethanesulfonate–Surfactant Combined Precatalyst[5] Sodium Dodecyl Sulfate (equiv) Yield (%) Ref 0 17 [5] 0.04 12 [5] 0.1 19 [5] 0.2 50 [5] 1.0 22 [5] ? Scheme 4 Mukaiyama Aldol Reactions Catalyzed by Lanthanide(III) Trifluoromethanesulfonate–Surfactant Combined Precatalysts[6] R1 R2 Ln(OTf)3 dr (anti/syn) Yield (%) Ref H CH2OTBDPS Eu(OTf)3 90:10 25 [6] H CH2OTBDPS La(OTf)3 91:9 46 [6] H CH2OTBDPS Yb(OTf)3 94:6 33 [6] CH2OTBDPS H La(OTf)3 67:33 33 [6] H OBn La(OTf)3 90:10 35a [6] a Starting material was used as a racemic mixture of R,R- and S,S-stereoisomers. Methyl 2,2-Dimethyl-3-(trimethylsiloxy)alkanoates 3 and Methyl 3-Hydroxy-2,2-dimethylalkanoates 4; General Procedure Using Lanthanide(III) Chlorides or Bromides:[1,2] Aldehyde 1 and silyl enol ether 2 were added to a suspension of LnX3 (0.05 or 0.10 equiv) in CH2Cl2 under argon at ambient temperature. After the reaction was complete the solvent was removed under reduced pressure. The crude material obtained was purified by flash chromatography (silica gel). Methyl 2,2-Dimethyl-3-(trimethylsiloxy)alkanoates 3 and Methyl 3-Hydroxy-2,2-dimethylalkanoates 4; General Procedure Using Samarium(II) or Samarium (III) Iodide:[3] Methods A and B allow the preparation of ß-hydroxycarbonyls 4 using SmI2. Method B is preferred when silyl ethers 3 are desired. Method A: A 0.10 M soln of SmI2 in THF (1.0 mL) was concentrated under reduced pressure to give SmI2 (THF)2 as a blue powder. Alternatively, SmI2 (THF)2 (55 mg, 0.10 mmol) was weighed in a glovebox. This precatalyst, or SmI3 (THF)3 if desired, was suspended in CH2Cl2 (5 mL), and silyl acetal 2 (2.2–3.0 mmol) was added followed by the aldehyde 1 (2.0 mmol). The resulting yellow soln was stirred under argon. The mixture was hydrolyzed with 0.1 M HCl (5 mL) and extracted with Et2O. The extracts were washed with H2O and dried (MgSO4). After removal of the solvent, the product was purified by flash chromatography (silica gel). Method B: Method A was followed, but instead of adding HCl the reaction was stopped by the addition of hexane (50 mL), which precipitated samarium salts. After filtration through Celite, the solvents were removed under reduced pressure, and purification by flash chromatography (silica gel) afforded the desired product. 3-Hydroxycarbonyl Compounds 6; General Procedure:[4] CAUTION: Formaldehyde is a probable human carcinogen, a severe eye, skin, and respiratory tract irritant, and a skin sensitizer. To a...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.