Richard / Sander | Fatigue Crack Growth | E-Book | sack.de
E-Book

E-Book, Englisch, Band 227, 305 Seiten, eBook

Reihe: Solid Mechanics and Its Applications

Richard / Sander Fatigue Crack Growth

Detect - Assess - Avoid

E-Book, Englisch, Band 227, 305 Seiten, eBook

Reihe: Solid Mechanics and Its Applications

ISBN: 978-3-319-32534-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)



This book offers a concise introduction to fatigue crack growth, based on practical examples. It discusses the essential concepts of fracture mechanics, fatigue crack growth under constant and variable amplitude loading and the determination of the fracture-mechanical material parameters. The book also introduces the analytical and numerical simulation of fatigue crack growth as well as crack initiation. It concludes with a detailed description of several practical case studies and some exercises.
The target group includes graduate students, researchers at universities and practicing engineers.
Richard / Sander Fatigue Crack Growth jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Symbols;15
4;1 Designing Components and Structures According to Strength Criteria;20
4.1;1.1 Loads on Components and Structures;21
4.2;1.2 Stresses and Stress States in Components and Structures;24
4.2.1;1.2.1 Plane Stress State;25
4.2.2;1.2.2 Spatial Stress State;25
4.2.3;1.2.3 Principal Stresses;25
4.2.4;1.2.4 Plane Stress State or Plane Strain State;27
4.3;1.3 Proof of Static Strength;28
4.3.1;1.3.1 Equivalent Stress;28
4.3.2;1.3.2 Allowable Stress;29
4.3.3;1.3.3 Proof of Strength—Operational Sequence;30
4.3.4;1.3.4 Taking Account of the Notch Effect;31
4.3.5;1.3.5 Stress Concentration Factors;32
4.3.6;1.3.6 Material Parameters and Safety Factors;32
4.4;1.4 Proof of Fatigue Strength;37
4.4.1;1.4.1 Effective and Allowable Stresses;37
4.4.2;1.4.2 Material Parameters;38
4.4.3;1.4.3 Surface and Size Coefficients;40
4.4.4;1.4.4 Proof of Fatigue Strength with Notched Components;42
4.5;1.5 Proof of Structural Durability;42
4.6;1.6 Other Proofs;43
4.7;1.7 Limits of Classic Component Design;43
4.8;References;44
5;2 Damages Caused by Crack Growth;45
5.1;2.1 Crack Initiation and Crack Growth;47
5.2;2.2 Stable and Unstable Crack Growth;49
5.3;2.3 Damage Analysis/Fracture Surface Analysis;50
5.4;2.4 Fatigue Crack Growth in an ICE Wheel Tire;54
5.5;2.5 Crack Growth in a Press Frame;55
5.6;2.6 Fatigue Crack Growth in the Fastener Body of an Internal High-Pressure Metal Forming Machine;57
5.7;2.7 Fracture of the Drive Shaft of a Vintage Car;57
5.8;2.8 Other Damage Events;57
5.9;2.9 Basic Crack Paths and Crack Shapes in Components and Structures;59
5.9.1;2.9.1 Crack Paths of Basic Stress States;60
5.9.2;2.9.2 Crack Paths and Crack Shapes in Shafts;61
5.9.3;2.9.3 Systematizing Crack Types in Components and Structures;63
5.10;2.10 Crack Detection Using Non-destructive Testing Methods;67
5.11;References;69
6;3 Fundamentals of Fracture Mechanics;72
6.1;3.1 Cracks and Crack Modes;72
6.1.1;3.1.1 Mode I;73
6.1.2;3.1.2 Mode II;74
6.1.3;3.1.3 Mode III;74
6.1.4;3.1.4 Mixed Mode;74
6.2;3.2 Stress Distributions at Cracks;75
6.2.1;3.2.1 Solving Crack Problems with Elasticity Theory;75
6.2.2;3.2.2 Stress Distributions for Plane Crack Problems;76
6.2.2.1;3.2.2.1 Stress Distributions in Mode I;78
6.2.2.2;3.2.2.2 Stress Distributions for Plane Mixed-Mode Loading;78
6.2.3;3.2.3 Stress Distributions for Spatial Crack Problems;81
6.2.3.1;3.2.3.1 Stress Distributions in Cartesian Coordinates;81
6.2.3.2;3.2.3.2 Stress Distributions in Cylindrical Coordinates;81
6.3;3.3 Displacement Fields Near the Crack;83
6.4;3.4 Stress Intensity Factors;84
6.4.1;3.4.1 Stress Intensity Factors for Crack Modes I, II and III;84
6.4.1.1;3.4.1.1 Definition of the Stress Intensity Factors KI, KII, KIII;84
6.4.1.2;3.4.1.2 Dimension and Unit of Stress Intensity Factors;85
6.4.2;3.4.2 Stress Intensity Factors for Basic Crack Problems;85
6.4.2.1;3.4.2.1 Griffith Crack in an Infinitely Extended Plate;85
6.4.2.2;3.4.2.2 Circular Crack in an Infinitely Extended Body Under Tensile Loading;86
6.4.2.3;3.4.2.3 Internal Crack in a Finitely Extended Plate;86
6.4.2.4;3.4.2.4 Edge Crack in a Semi-infinitely and Finitely Extended Plate Under Tensile Loading;87
6.4.2.5;3.4.2.5 Inclined Internal Crack in an Infinitely Extended Plate Under Uniaxial Loading;88
6.4.2.6;3.4.2.6 Semi-elliptical Surface Crack in a Tensile-Loaded Component;89
6.4.2.7;3.4.2.7 Semi-circular Edge Crack in a Component;90
6.4.2.8;3.4.2.8 Notch Crack Problems;92
6.4.2.9;3.4.2.9 Interpolation Formula for Mode I Stress Intensity Factors;94
6.4.2.10;3.4.2.10 Interpolation Formulae for Mode II and Mode III Stress Intensity Factors;94
6.4.3;3.4.3 Superposition of Stress Intensity Factors, Equivalent Stress Intensity Factors;94
6.4.3.1;3.4.3.1 Superposition of Stress Intensity Factors;96
6.4.3.2;3.4.3.2 Equivalent Stress Intensity Factor with Plane Mixed-Mode Loading;97
6.4.3.3;3.4.3.3 Equivalent Stress Intensity Factor with Spatial Mixed-Mode Loading;98
6.5;3.5 Local Plasticity at the Crack Tip;101
6.5.1;3.5.1 Estimating the Plastic Zone;101
6.5.2;3.5.2 Crack Length Correction;104
6.5.3;3.5.3 Significance of the Plastic Zone in Fatigue Crack Propagation;105
6.6;3.6 Energy Release Rate and the J-Integral;105
6.6.1;3.6.1 Energy Release Rate;105
6.6.2;3.6.2 J-Integral;106
6.7;3.7 Determining the Stress Intensity Factors and Other Fracture-Mechanical Quantities;107
6.7.1;3.7.1 Determining the Stress Intensity Factors from the Stress Field in the Vicinity of the Crack;108
6.7.2;3.7.2 Determining the Stress Intensity Factors from the Displacement Field in the Vicinity of the Crack;109
6.7.3;3.7.3 Determining Fracture-Mechanical Quantities with the J-Integral;109
6.7.4;3.7.4 Determining Fracture-Mechanical Quantities with the Crack Closure Integral;110
6.8;3.8 Concepts for Predicting Unstable Crack Growth;112
6.8.1;3.8.1 K-Concept for Mode I;113
6.8.2;3.8.2 K-Concept for Mode II, Mode III and Mixed Mode Loadings;113
6.8.2.1;3.8.2.1 K-Concept for Mode II;114
6.8.2.2;3.8.2.2 K-Concept for Mode III;114
6.8.2.3;3.8.2.3 K-Concept for Plane Mixed Mode;115
6.8.2.4;3.8.2.4 K-Concept for Spatial Mixed Mode;116
6.8.3;3.8.3 Criterion of Energy Release Rate;119
6.8.4;3.8.4 J-Criterion;119
6.9;3.9 Fracture Toughness;120
6.10;3.10 Assessing Components with Cracks Using Fracture-Mechanical Methods;120
6.10.1;3.10.1 Fracture-Mechanical Proof—Operational Sequence;120
6.10.2;3.10.2 Applying the Fracture Criterion and the Fracture-Mechanical Analysis to Mode I Crack Problems;122
6.10.3;3.10.3 Applying the Fracture Criterion and the Fracture-Mechanical Analysis to Mode II, Mode III and Mixed Mode Problems;124
6.11;3.11 Combining Strength Calculation and Fracture Mechanics;125
6.12;References;128
7;4 Fatigue Crack Growth Under Cyclic Loading with Constant Amplitude;130
7.1;4.1 Relation Between Component Loading and Cyclic Stress Intensity;131
7.1.1;4.1.1 Stress Fields with Time-Varying Mode I Loading;132
7.1.2;4.1.2 Cyclic Stress Intensity Factor for Mode I;132
7.1.3;4.1.3 R-ratio;133
7.1.4;4.1.4 Crack Propagation Process;134
7.1.5;4.1.5 Stress Field with Time-Varying Mode II, Mode III and Mixed-Mode Loading;134
7.1.6;4.1.6 Cyclic Stress Intensity Factor for Mode II;135
7.1.7;4.1.7 Cyclic Stress Intensity Factor for Mode III;136
7.1.8;4.1.8 Two-Dimensional Mixed-Mode Loading;136
7.1.9;4.1.9 Three-Dimensional Mixed-Mode Loading;136
7.2;4.2 Relationship Between Crack Growth Rate and the Cyclic Stress Intensity Factor;137
7.2.1;4.2.1 Limits of Fatigue Crack Propagation for Mode I;139
7.2.2;4.2.2 Factors Influencing the Crack Growth Curve;139
7.2.3;4.2.3 Crack Closure Behavior During Fatigue Crack Growth;140
7.2.3.1;4.2.3.1 Plasticity-Induced Crack Closure;141
7.2.3.2;4.2.3.2 Roughness-Induced Crack Closure;141
7.2.3.3;4.2.3.3 Oxide-Induced Crack Closure;142
7.2.3.4;4.2.3.4 Fluid-Induced Crack Closure;143
7.2.3.5;4.2.3.5 Determining the Crack Opening Stress Intensity Factor;143
7.2.4;4.2.4 Threshold Value and Threshold Value Behavior;144
7.2.4.1;4.2.4.1 Threshold Value Behavior on the Basis of Crack Closure;145
7.2.4.2;4.2.4.2 Two-Criteria Approach to Threshold Value Behavior;146
7.3;4.3 Crack Propagation Concepts for Mode I;149
7.3.1;4.3.1 Paris Law;150
7.3.2;4.3.2 Erdogan/Ratwani Law;150
7.3.3;4.3.3 Forman/Mettu Equation;151
7.3.4;4.3.4 Comparison of the Crack Propagation Equations;152
7.3.5;4.3.5 Determining Residual Lifetime;154
7.4;4.4 Crack Growth Under Mode II, Mode III and Mixed-Mode Loading;157
7.4.1;4.4.1 Crack Growth Under Mode II Loading on the Initial Crack;157
7.4.2;4.4.2 Crack Growth Under Mode III Loading on the Initial Crack;159
7.4.3;4.4.3 Crack Growth Under Two-Dimensional Mixed-Mode Loading;159
7.4.4;4.4.4 Crack Growth Under Three-Dimensional Mixed-Mode Loading;160
7.5;4.5 Procedure for Assessing Fatigue Crack Growth;161
7.5.1;4.5.1 Fracture-Mechanical Assessment of Fatigue Crack Growth;162
7.5.2;4.5.2 Determining the Crack Length at Which Fatigue Crack Growth Is Possible;163
7.5.3;4.5.3 Safety Against the Occurrence of Fatigue Crack Growth;164
7.5.4;4.5.4 Area of Fatigue Crack Growth;164
7.5.5;4.5.5 Defining Inspection Intervals;165
7.6;4.6 Combination of Fatigue Strength Calculation and Fracture Mechanics;166
7.7;References;167
8;5 Experimental Determination of Fracture-Mechanical Material Parameters;169
8.1;5.1 Critical Stress Intensity Factor and Fracture Toughness;169
8.1.1;5.1.1 Determining Fracture Toughness According to ASTM E 399;170
8.1.1.1;5.1.1.1 Test Specimens and Sampling;170
8.1.1.2;5.1.1.2 Minimum Specimen Dimensions;172
8.1.1.3;5.1.1.3 Starter Notch and Initial Fatigue Crack;173
8.1.2;5.1.2 Testing Methods for Determining the Fracture Toughness;174
8.1.3;5.1.3 KIC or KQ?—Assessment of the Tests;174
8.1.3.1;5.1.3.1 Finding KQ and KIC Values in Force-Displacement Diagrams;174
8.1.3.2;5.1.3.2 Crack Length Measurement;175
8.1.3.3;5.1.3.3 Validity of the KIC Test;177
8.2;5.2 Threshold Values and Crack Growth Curves;177
8.2.1;5.2.1 Determining Threshold Values and Crack Growth Curves Acc. to ASTM E 647;177
8.2.1.1;5.2.1.1 Test Specimens and Specimen Dimensions;178
8.2.1.2;5.2.1.2 Starter Notch and Precracking;179
8.2.1.3;5.2.1.3 Testing Methods for Determining the Fatigue Crack Growth Curve;180
8.2.2;5.2.2 Methods of Determining the Threshold Value;181
8.2.2.1;5.2.2.1 Tests with a Constant Stress Ratio;182
8.2.2.2;5.2.2.2 Tests with a Constant Maximum Stress Intensity;183
8.2.2.3;5.2.2.3 Tests with Increasing Cyclic Stress Intensity;183
8.2.3;5.2.3 Methods of Measuring Crack Length;184
8.2.3.1;5.2.3.1 Optical Methods;184
8.2.3.2;5.2.3.2 Current Potential Drop Method;185
8.2.3.3;5.2.3.3 Compliance Method;187
8.2.3.4;5.2.3.4 Crack Length Measurement on Fractured Specimens;187
8.2.4;5.2.4 Determining the Fatigue Crack Growth Rate;188
8.2.4.1;5.2.4.1 Secant Method;188
8.2.4.2;5.2.4.2 Incremental Polynomial Method;189
8.2.5;5.2.5 Evaluating the Threshold Value and Crack Growth Curve Tests;189
8.3;5.3 Material Parameters for Mode I Crack Growth;191
8.3.1;5.3.1 Fracture Toughnesses;191
8.3.1.1;5.3.1.1 Basic Dependencies of Fracture Toughnesses;191
8.3.1.2;5.3.1.2 Overview of the Fracture Toughnesses of Various Materials;191
8.3.1.3;5.3.1.3 Fracture Toughnesses for Selected Materials;191
8.3.2;5.3.2 Threshold Values of Fatigue Crack Growth;193
8.3.3;5.3.3 Fatigue Crack Growth Curves;193
8.3.3.1;5.3.3.1 Basic Course of the Crack Growth Curves for Selected Materials;194
8.3.3.2;5.3.3.2 Parameters for the Paris Equation;194
8.3.3.3;5.3.3.3 Parameters for the Forman/Mettu Equation;195
8.4;5.4 Material Parameters for Mode II and Mixed-Mode Loading;195
8.4.1;5.4.1 Mode II Loading;197
8.4.2;5.4.2 Two-Dimensional Mixed-Mode Loading;198
8.4.3;5.4.3 Three-Dimensional Mixed-Mode Loading;199
8.5;References;201
9;6 Fatigue Crack Growth Under Service Loads;203
9.1;6.1 Load Spectra and Cumulative Frequency Distribution;203
9.1.1;6.1.1 Determining Service Loads;204
9.1.2;6.1.2 Counting Methods;204
9.1.3;6.1.3 Standard Load Spectra;205
9.2;6.2 Interaction Effects;207
9.2.1;6.2.1 Overloads;207
9.2.1.1;6.2.1.1 Effect of Overloads on Fatigue Crack Growth;208
9.2.1.2;6.2.1.2 Quantifying Retardation Behavior;209
9.2.1.3;6.2.1.3 Factors Influencing the Retardation Effect;210
9.2.2;6.2.2 Underloads;212
9.2.3;6.2.3 Combinations of Underloads and Overloads;212
9.2.4;6.2.4 Overload Sequences;212
9.2.5;6.2.5 Block Loading;214
9.2.6;6.2.6 Service Loads;216
9.2.6.1;6.2.6.1 Effect of Service Loads;216
9.2.6.2;6.2.6.2 Implications of Reconstructing Load-Time Functions;217
9.2.6.3;6.2.6.3 Implications of Extrapolating Load-Time Functions;218
9.3;6.3 Crack Propagation Concepts for Variable Amplitude Loading;220
9.3.1;6.3.1 Global Analyses;220
9.3.2;6.3.2 Linear Damage Accumulation;221
9.3.3;6.3.3 Yield Zone Models;222
9.3.3.1;6.3.3.1 Wheeler Model;224
9.3.3.2;6.3.3.2 Gray/Gallagher Model;226
9.3.3.3;6.3.3.3 Willenborg Model;227
9.3.4;6.3.4 Crack Closure Models;229
9.3.5;6.3.5 Strip Yield Models;230
9.4;6.4 Mixed-Mode Loading;232
9.4.1;6.4.1 Crack Growth After a Change in the Loading Direction or in the Local Load at the Crack;233
9.4.2;6.4.2 Effect of Mixed-Mode Overloads on Fatigue Crack Growth;234
9.5;References;235
10;7 Simulations of Fatigue Crack Growth;238
10.1;7.1 Analytical Crack Growth Simulations;238
10.1.1;7.1.1 NASGRO and ESACRACK;239
10.1.2;7.1.2 AFGROW;240
10.2;7.2 Numerical Crack Growth Simulations;241
10.2.1;7.2.1 Basic Procedure with Finite Elements;241
10.2.2;7.2.2 Program System FRANC/FAM for Two-Dimensional Crack Propagation Simulations;244
10.2.3;7.2.3 Program System ADAPCRACK3D for Three-Dimensional Crack Propagation Simulations;245
10.3;7.3 Determining the Effect of Load Changes with Finite Element Analyses;247
10.4;References;250
11;8 Crack Initiation Under Cyclic Loading;253
11.1;8.1 Models for Describing Crack Initiation;254
11.1.1;8.1.1 Threshold Value Curve Concept;255
11.1.2;8.1.2 Theories of Critical Distances;257
11.1.3;8.1.3 Fatigue Crack Resistance Curve Concept;258
11.1.4;8.1.4 ?area Concept;260
11.2;8.2 Short Crack Growth;262
11.3;References;263
12;9 Practical Examples;265
12.1;9.1 Leak in a Pipeline;265
12.1.1;9.1.1 Stresses in the Pipe;265
12.1.2;9.1.2 Stress Intensity Factors for the Crack;267
12.1.3;9.1.3 Safety Against Unstable Crack Propagation;267
12.1.4;9.1.4 Crack Length at Which Unstable Crack Propagation Initiates;268
12.2;9.2 Investigating Fatigue Crack Growth in ICE Tires;268
12.2.1;9.2.1 Structure and Load of Rubber-Sprung Wheels;268
12.2.2;9.2.2 Numerical Stress Analysis;270
12.2.3;9.2.3 Damage Analysis of the Wheel Tire Fracture;271
12.2.4;9.2.4 Fracture-Mechanical Characterization of the Tire Material;272
12.2.5;9.2.5 Numerical Simulation of Fatigue Crack Growth;272
12.2.6;9.2.6 Experimental Simulation of Crack Growth;274
12.3;9.3 Simulation of Fatigue Crack Growth in a Press Frame;276
12.4;9.4 Preventing Crack Growth in a Piston;279
12.5;9.5 Investigating Crack Growth in an Aircraft Structure;281
12.6;9.6 Parameter Study of a Surface Crack in a Shaft Under Rotating Bending Load;284
12.6.1;9.6.1 Influence of the Cumulative Frequency Distribution;285
12.6.2;9.6.2 Influence of the Notch Effect and Press-Fit Stresses;287
12.6.3;9.6.3 Influence of the Initial Crack Depth and Geometry on Residual Life Simulation;288
12.7;9.7 Restoration of a Press;289
12.7.1;9.7.1 Modeling the Crack Geometry in the Sealing Cap;290
12.7.2;9.7.2 Stress Analysis for the Cap;290
12.7.3;9.7.3 Results of the FE Analyses for the Cracked Sealing Cap;291
12.7.4;9.7.4 Fracture-Mechanical Assessment of the FE Results;291
12.7.5;9.7.5 Consequences for Continued Machine Operation;292
12.8;9.8 Measures for Extending the Residual Life of Machines and Equipment;292
12.8.1;9.8.1 Continued Operation of a Machine or System After Crack Detection;293
12.8.1.1;9.8.1.1 Continued Operation with Regular Inspections;293
12.8.1.2;9.8.1.2 Continuous Operation Under Reduced Load;294
12.8.1.3;9.8.1.3 Extending Residual Life by Means of Targeted Restoration Measures;294
12.8.1.4;9.8.1.4 Exchanging the Damaged Component;295
12.8.2;9.8.2 Optimization Measures for a New Design;295
12.8.2.1;9.8.2.1 Limiting or Reducing Component Load;295
12.8.2.2;9.8.2.2 Reducing Local Stresses in the Component;295
12.8.2.3;9.8.2.3 Selecting a Material that Is Less Susceptible to Cracking;295
12.8.2.4;9.8.2.4 Preventing Manufacturing Defects;296
12.8.2.5;9.8.2.5 Optimization Potential;296
12.9;References;296
13;Index;298

Preface.- 1 Designing Components and Structures According to Strength Criteria.- 2 Damages Caused by Crack Growth.- 3 Fundamentals of Fracture Mechanics.- 4 Fatigue Crack Growth under Cyclic Loading with Constant Amplitude.- 5 Experimental Determination of Fracture-Mechanical Material Parameters.- 6 Fatigue Crack Growth under Service Loads.- 7 Simulations of Fatigue Crack Growth.- 8 Crack Initiation under Cyclic Loading.- 9 Practical Examples.- 10 Important Symbols.- Index.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.