Sauer | Inductively Coupled Resonant Humidity Monitoring Exploiting Irreversible State Changes | E-Book | sack.de
E-Book

E-Book, Englisch, 204 Seiten

Sauer Inductively Coupled Resonant Humidity Monitoring Exploiting Irreversible State Changes

E-Book, Englisch, 204 Seiten

ISBN: 978-3-7431-6868-8
Verlag: Books on Demand
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)



Due to the pervasive nature of water, water vapor, and moisture, there is a strong influence on the product quality of a multitude of goods (e.g., food, chemicals, electronics, ammunition, etc.). Humidity as environmental water vapor is therefore of strong interest for the purposes of measurement and control throughout the life cycle of goods not only in regard to their use but also during manufacture, transport, and storage. One of the key requirements of monitoring measurement systems is to determine critical threshold or accumulated dosage exposure conditions. Nowadays, RFID technology is established, and a large number of standardized and non-standardized solutions of differing complexity exist. Sensor-enhanced RFID tags not only provide unique identification information but also additional sensor information. Fulfilling a monitoring task on item level is challenging when there is no continuous supply of electric energy available, a common application constraint in sensor-enhanced RFID applications. Application constraints are impeded due to the low cost requirements on the RFID market. Wireless passive humidity monitoring sensor solutions, in which the exceedance of a humidity threshold leads to a permanent, preferably irreversible change of a sensor parameter are proposed in this study. In the presented solutions, this is either a lasting electric resistance (IREV-R sensor approach) or an electric capacitance change (IREV-C sensor approach). For this purpose a number of physico-chemical phenomena are technically exploited in different sensor arrangements. These are the deliquescence of salts as threshold detection mechanism, transport processes in porous media as well as chemical liquid phase sintering of metal nanoparticles. The sensor principles introduced effectively act as humidity threshold-activated relative humidity dosimeters. For use in combination with RFID tags single use, low-cost sensor solutions are favored. Inkjet print as a representative mass production technique for printed electronics is examined in more depth, and its application exemplified for the IREV-R sensor principle. Theoretical, numerical and laboratory experimental results, which demonstrate the feasibility of the proposed sensor principles and developed solutions, are presented.

Sebastian Sauer received his Dr.-Ing. and Dipl.-Ing. degree in Mechatronics in 2009 from the Technische Universität Dresden (TUD). He is working as a scientific assistant at the Institute of Semiconductors and Microsystems of the TUD, and holds a position in industry at company PRODAT. His general interest covers sensors, passive wireless sensors, sensor systems, wireless sensor networks, and the technical exploitation of irreversible state changes.
Sauer Inductively Coupled Resonant Humidity Monitoring Exploiting Irreversible State Changes jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Title Page;3
2;Copyright;4
3;Table of Contents;5
4;Nomenclature;7
5;1 Introduction;17
5.1;1.1 Towards Completely Printed Sensor-enhanced RFID Tags;17
5.2;1.2 Humidity Impact and Promises of Lowest Cost Monitoring Solutions;18
6;2 State of the Art;21
6.1;2.1 Humidity Measurement Principles and Sensors;21
6.2;2.2 Wireless Passive Sensors;28
6.3;2.3 Sensors Exploiting Irreversibility;32
7;3 Thesis Scope and Structure;41
8;4 Physicochemical Phenomena Exploited;43
8.1;4.1 Humidity Threshold Detection and Sensor Activation by Deliquescence;43
8.1.1;4.1.1 Deliquescence and Efflorescence;44
8.1.2;4.1.2 Influential Factors;48
8.2;4.2 Dissemination Processes in Porous Media as Delay and/or State Change Mechanism;52
8.2.1;4.2.1 Porous Media and the Representative Elementary Volume;52
8.2.2;4.2.2 Transport Processes in Porous Media;53
8.2.3;4.2.3 Salt Solution Dissemination;57
8.3;4.3 Nanoparticle Sintering as a Permanent State Change Mechanism;58
8.3.1;4.3.1 Nanoparticles and Nanoparticle Inks;58
8.3.2;4.3.2 Nanoparticle Sintering;62
8.3.3;4.3.3 Exploited Chemical Sintering;65
8.4;4.4 Discussion;70
9;5 Sensor Resonator and Measurement System;73
9.1;5.1 Sensor Resonator;74
9.2;5.2 Measurement Procedure;86
9.2.1;5.2.1 Principle;86
9.2.2;5.2.2 Mutual Inductance and Coupling Coefficient;88
9.2.3;5.2.3 Steady State in the Frequency Domain;91
9.2.4;5.2.4 Transient State in the Time Domain;97
9.3;5.3 Double Planar Coil Sensor Arrangement;104
9.4;5.4 Time Domain Sensor Interrogation;111
9.4.1;5.4.1 An Interrogation System Architecture;111
9.4.2;5.4.2 Signal Analysis Problem Formulation;112
9.4.3;5.4.3 Analysis Algorithm Performance Comparison .;117
9.4.4;5.4.4 Matrix Pencil Technique;121
10;6 Irreversible Capacitance Change Based Wireless Sensor Principle;127
10.1;6.1 Concept;127
10.2;6.2 Elementary Capacitive Cell;129
10.3;6.3 Measurement Setup;132
10.4;6.4 Experimental Results;134
10.5;6.5 Discussion;138
11;7 Sensor Principle Based on an Irreversible Resistance Change;141
11.1;7.1 Concept;141
11.2;7.2 Manufacturing via Inkjet Print;142
11.2.1;7.2.1 Humidity Sensitive Element;144
11.2.2;7.2.2 Critical Manufacturing Parameters;147
11.2.3;7.2.3 ICR Resonator Printing;154
11.3;7.3 Humidity Response;155
11.4;7.4 Variation of Selected Sensor Parameters;160
11.5;7.5 Intermixed Salt-Nanoparticle Region;163
11.6;7.6 Complementary Results;168
11.7;7.7 Application Demonstration;175
11.7.1;7.7.1 Inductively Coupled Resonant Sensor Tag;175
11.7.2;7.7.2 Sensor-enhanced RFID UHF Transponder Tag;177
12;8 Conclusion and Outlook;181
13;Bibliography;185
14;List of Figures;201
15;List of Tables;205


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.