Schäfer | Sustainable Water for the Future | E-Book | sack.de
E-Book

E-Book, Englisch, 445 Seiten

Schäfer Sustainable Water for the Future

Water Recycling versus Desalination

E-Book, Englisch, 445 Seiten

ISBN: 978-0-08-093217-0
Verlag: Elsevier Reference Monographs
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This book is part of a series on sustainability. Specifically, it deals with the issue of sustainable water use. Fresh sources of potable water are being depleted across the world. Pure water is the goal of water utilities as well as several industries. Well past the experimental stage, membrane processes are now a proven and reliable method of providing high-quality, cost-effective water. Membrane technologies have immediate applications to treatment of fresh, brackish and sea waters, as well as wastewater reclamation. With innovative module design and engineering, micro- and ultra-filtrations have become effective and economical for drinking water production, particularly for removal of microorganisms. Membrane bioreactors are being developed for municipal and industrial water recycling. Various membrane processes are also used to remove contaminants from industrial wastewaters.
This book covers the fundamental and practical concepts and issues regarding the application of membrane technologies for sustainable water treatment. It describes and compares the effectiveness of desalination versus water recycling for long-term sustainable water use.
- Describes the global water situation with respect to sustainability - Emphasizes the role of membrane technologies - Compares the strategies of water recycling and desalination
Schäfer Sustainable Water for the Future jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front cover;1
2;Sustainable Water for theFuture: Water Recyclingversus Desalination;4
3;Copyright page;5
4;Dedications;6
5;Part One: Water Situation;22
5.1;Chapter 1. An Overview of the Global Water Situation;24
5.1.1;References;26
5.2;Chapter 2. Global Desalination Situation;28
5.2.1;1. Introduction;28
5.2.2;2. Historical Development;29
5.2.3;3. Global Installed Desalination Capacity;32
5.2.4;4. Regional Desalination Situation;38
5.2.5;5. Environmental Concerns of Seawater Desalination;45
5.2.6;6. Summary and Conclusion;56
5.2.7;References;59
5.3;Chapter 3. The Global Water Recycling Situation;62
5.3.1;1. Introduction;62
5.3.2;2. Short History of Reuse Applications;64
5.3.3;3. Water Recycling Today;65
5.3.4;4. Water Recycling in the USA;66
5.3.5;5. Water Recycling in Asia;73
5.3.6;6. Water Recycling in Europe;75
5.3.7;7. Water Recycling in Australia;77
5.3.8;8. Water Recycling in other Parts of the World;79
5.3.9;9. Conclusions and Further Challenges;81
5.3.10;References;82
6;Part Two: Desalination Technologies;84
6.1;Chapter 4. Desalination: Reverse Osmosis and Membrane Distillation;86
6.1.1;1. Reverse Osmosis;86
6.1.2;2. Membrane Distillation;104
6.1.3;References;112
6.2;Chapter 5. Salinity Gradient Energy;116
6.2.1;1. Introduction;116
6.2.2;2. Theoretical Potential of Salinity Gradient Energy;118
6.2.3;3. Pressure-Retarded Osmosis;122
6.2.4;4. Reverse Electrodialysis;139
6.2.5;5. Concluding Remarks;157
6.2.6;References;158
6.3;Chapter 6. Ion-Exchange Membrane Processes in Water Treatment;162
6.3.1;1. Introduction;162
6.3.2;2. Transport of Ions in Membranes and Solutions;173
6.3.3;3. Ion-Exchange Membranes, and their Properties and Preparation;181
6.3.4;4. The Design of Ion-Exchange Membrane Separation Processes;186
6.3.5;5. Applications of Ion-Exchange Membrane Separation Processes;206
6.3.6;List of symbols;217
6.3.7;References;219
7;Part Three: Water Recycling Technologies;222
7.1;Chapter 7. Micropollutants in Water Recycling: A Case Study of N-Nitrosodimethylamine (NDMA) Exposure from Water versus Food;224
7.1.1;1. Introduction;225
7.1.2;2. Characteristics, Formation, and Sources of NDMA;226
7.1.3;3. Human Exposure to NDMA;232
7.1.4;4. Regulation of NDMA in Drinking Water;237
7.1.5;5. Control of NDMA in Water;238
7.1.6;6. Conclusions;243
7.1.7;References;243
7.2;Chapter 8. TiO2-Based Advanced Oxidation Nanotechnologies for Water Purification and Reuse;250
7.2.1;1. Role of Advanced Oxidation Technologies for Innovative Water Treatment;251
7.2.2;2. TiO2 Photocatalytic Processes: Green Chemistry and Engineering;253
7.2.3;3. Mechanism of TiO2 Photocatalysis;253
7.2.4;4. Photocatalytic Water and Wastewater Treatment and Purification;258
7.2.5;5. Applications of TiO2 Photocatalysis;262
7.2.6;6. Challenges and Issues in TiO2 Photocatalysis for Water Treatment;263
7.2.7;7. Current Advances in TiO2 Photocatalysis;267
7.2.8;8. Economic Aspect of TiO2 Photocatalysis;270
7.2.9;9. Concluding Remark: Advanced Oxidation Nanotechnologies and Sustainability;271
7.2.10;Acknowledgments;272
7.2.11;References;272
7.3;Chapter 9. Membrane Bioreactors: Theory and Applications to Wastewater Reuse;276
7.3.1;1. Introduction;276
7.3.2;2. Membrane Bioreactor Fundamentals;277
7.3.3;3. Contaminant Removal;291
7.3.4;4. Application of Membrane Bioreactors for Wastewater Reuse;296
7.3.5;References;310
8;Part Four: Concentrate Disposal Options;314
8.1;Chapter 10. Concentrate Treatment for Inland Desalting;316
8.1.1;1. Introduction;316
8.1.2;2. Background;317
8.1.3;3. Concentrate Production;318
8.1.4;4. RO Concentrate Treatment Technologies;322
8.1.5;5. Conclusion;340
8.1.6;References;343
8.2;Chapter 11. Inland Desalination: Current Practices, Environmental Implications, and Case Studies in Las Vegas, NV;348
8.2.1;1. Introduction;348
8.2.2;2. Strategies for Inland Brine Disposal: ZLD and Fluidized Bed Crystallizers;351
8.2.3;3. Beneficial Uses of Brine By-Products;355
8.2.4;4. Las Vegas Valley Shallow Groundwater Study;356
8.2.5;5. Zero-Liquid Discharge with Fluidized Bed Crystallizer Study;360
8.2.6;6. Test Results;360
8.2.7;7. Treatment Costs and Energy Requirements;364
8.2.8;8. Outcomes and Future Considerations;368
8.2.9;References;369
9;Part Five: Comparison of Desalination versus Water Recycling;372
9.1;Chapter 12. Renewable Energy Powered Water Treatment Systems;374
9.1.1;1. Introduction;374
9.1.2;2. Renewable Energy in the World Today;376
9.1.3;3. Renewable Energy Powered Water Treatment Technologies;381
9.1.4;4. Synergy between Renewable Energy Resource and Water Supply;382
9.1.5;5. Small-Scale Renewable Energy Powered Membrane Filtration Plants;388
9.1.6;6. Conclusions;391
9.1.7;References;392
9.2;Chapter 13. Desalinated Versus Recycled Water: What Does the Public Think?;396
9.2.1;1. Introduction;396
9.2.2;2. Prior Work;397
9.2.3;3. Methodology;398
9.2.4;4. Results;399
9.2.5;5. Conclusions;405
9.2.6;Acknowledgments;407
9.2.7;References;407
9.3;Chapter 14. Conclusion: A Summary of Challenges still Facing Desalination and Water Reuse;410
9.3.1;1. Challenges Facing Desalination;411
9.3.2;2. Challenges Facing Water Reuse;412
9.3.3;3. Cross-Cutting Needs;414
9.3.4;References;416


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.